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Solve efficiently in parallel large systems of nonlinear equations
from implicit transient/quasistatic nonlinear solid mechanics simulations:

— geometric, material and contact nonlinearities

— Analytic Jacobian (stiffness matrix) can not be given or
is of poor quality/precision

— unstructured 3D discretizations

— parallel, scalable and memory efficient

— stable, reliable, user—friendly (commercial use)

— approach:

— nonlinear algebraic multigrid based on smoothed aggregation
— use graph of constrained problem

— construct Jacobian operator(s) by block colored finite differencing

Objective (M) i
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The method basically consists of 4 components:

— full approximation scheme (FAS) nonlinear V—cycle
— algebraic multigrid hierarchy (smoothed/plain aggregation multigrid)

— precond. nonlinear CG (nInCG) / precond. matrixfree Newton method
as nonlinear smoothers/solvers

— block colored finite differencing scheme

Implementation in Trilinos framework:

— make use of several Trilinos subpackages: s
ML (algebraic multigrid)
NOX (nonlinear solvers, finite differencing)
AztecOO (Krylov solvers)
EpetraExt (parallel coloring)
Epetra, Teuchos, ...

Obijective @ i
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— Full approximation scheme (FAS) nonlinear V—cycle

— Algebraic multigrid hierarchy (smoothed/plain aggregation multigrid)
— Preconditioned nonlinear CG / quasi—Newton method

— Block colored finite differencing scheme

— Constraints

— Example

Outline @m
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F(x) =0

<
NOX nonlinear CG

Fine grid

Ac = RAP

v

Algebraic coarse grids

ML algebraic
multigrid hierachy

Sandia

Nonlinear V—cycle (Full Approx. Scheme — FAS) @m



F(x) =0

<
NOX nonlinear CG

ML algebraic
multigrid hierachy

Restriction:
Fc = RF;; X¢ = RX;

Correction:
X;<— X+ P (xc— Rxf)

Modified coarse problem:

Sandia

Nonlinear V—cycle (Full Approx. Scheme — FAS) @W



Application F(x)

Ff+ * X

NOX interface

F(x) =0

<
NOX nonlinear CG

ML algebraic
multigrid hierachy

Fc = RFy

NOX coarse interface

— fine interface implements NOX: : Epet raNew: : I nterf ace: : Requi r ed/ Jacobi an
and NOX: : Par anet er : : PrePost Oper at or

—s nonlinear ML preconditioner implements Epet r a_QOper at or and
NOX: : EpetraNew: : I nterface:: Preconditioner

Variational residual evaluation @ National
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Fi=Fq
set up
FAS—system Fy= F(Xa))
of eqns. X = X Note:

It (level = coarsest level ) — FAS—V—cycle is potentially
coarse X X — R (operators P and R can be
solve 70

RetUm based on graph only)

— A method to Relax/Solve is
not yet introduced here

restrict,
call cycle,
add correction

Xy < Xoy T PXgsy

post= X < X ~ X
smoothing

§ Xg+1) = RXpy i Faun = RF(Xg)

Return

. Sandia
Nonlinear V—cycle @m, tionel
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— Full approximation scheme (FAS) nonlinear V—cycle

—_Algebraic multigrid hierarchy (smoothed/plain aggregation multigrid)
— Preconditioned nonlinear CG / quasi—Newton method

— Block colored finite differencing scheme

— Constraints

— Example
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— In geometric multigrid, transfer operators
are obtained from element shape functions

Smoothed aggregation multigrid Naona
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— In geometric multigrid, transfer operators
are obtained from element shape functions

— In smoothed aggregation multigrid, transfer
operators are constructed from
aggregate (patch) — wise representation of
rigid body modes

[VANEK, MANDEL, BREZINA 1990—2005]

Smoothed aggregation multigrid Naona



— In smoothed aggregation multigrid, transfer
operators are constructed from
aggregate (patch) — wise representation of
rigid body modes

[VANEK, MANDEL, BREZINA 1990—2005]

— Aggregates are constructed from the graph
of the problem on some level, not from any grid

only!

Smoothed aggregation multigrid
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In smoothed aggregation multigrid, transfer
operators are constructed from

aggregate (patch) — wise representation of
rigid body modes

Rigid body modes on fine level (0) are input:
0 = [pO KO (0)
BO = [b® b® ... bQ |
and are represented on coarse levels exactly:
(0) 5(1)
range(B") C range(P(o)) , p(Q)

_ A \ (1)
) — P pE L =
PO = PRPE . PO, 1=1,.,L

Tentative prolongations are constructed recursively
using the aggregates:

BI-D = PE:) ) BO | 1=1..,L
Final prolongations are obtained through smoothing:
H =( = -1 5() _ 1.5
I:)(|—1) (I oD A(')) I:)(I—l) @ Amax(D ~1A)

Smoothed aggregation multigrid National_
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— In smoothed aggregation multigrid, transfer
operators are constructed from
aggregate (patch) — wise representation of
rigid body modes

— Rigid body modes on fine level (0) are input:
0 = [pO@ KO )
BO = [b® b® ... bQ |

— Additional near—nullspace components
not captured well by the existing
MG —preconditioner can be computed and
added to the set of functions to be represented
exactly (adaptive SA [BREzINA ET AL. 2005]):

BO = [b0 bO ... b® pO p@ ... |

— Rebuilding MG —hierarchy results in
improved convergence
(and higher cost in setup and per iteration)

Smoothed aggregation multigrid Naona
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— Full approximation scheme (FAS) nonlinear V—cycle

— Algebraic multigrid hierarchy (smoothed/plain aggregation multigrid)
— Preconditioned nonlinear CG / quasi—Newton method

— Block colored finite differencing scheme

— Constraints

— Example

Outline @m
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Compute the residual:
F; = F(x) onlevel (1)
Compute the conjugate search direction:
S+1=M7IF + By
FTM-1(F; - Fj_,)

T -1
F M-1F

max

e
I

0 L j=0

Compute new solution
_ Note:

with a secant line search parameter: — nonlinear CG is matrixiree
FT's
] )
T _ ET
- (Xi + Sj+1)si Fis
Choose some convergence criteria, e.g.
IFl, <e or <F,M‘1F> <e€

— the only operator needed is M ~1

Preconditioned nonlinear CG @ Hotionel
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— Preconditioned Newton—CG or Newton—GMRES (NOX/AztecOO)
as a nonlinear smoother/solver

— Preconditioner currently can be any solution/smoothing method with an
existing interface to ML (MLS/SGS/Chebychev/Amesos_KLU/Ifpack)

— QOperator for the Krylov method can be matrixfree or Jacobian
— Max. # Krylov iterations and Newton steps can be prescribed

— (Can be Newton on some, preconditioned nInCG on other grids

Preconditioned matrixfree Newton—Krylov @m
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— Full approximation scheme (FAS) nonlinear V—cycle

— Algebraic multigrid hierarchy (smoothed/plain aggregation multigrid)
— Preconditioned nonlinear CG / quasi—Newton method

— Block colored finite differencing scheme

— Constraints

— Example

Outline @m
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Parallel graph coloring ( Trilinos—ML/EpetraExt )

— parallel distance—2 graph coloring for finite differencing of the Jacobian

i

— as distance—2 coloring is very expensive, collapse graph to nodal block
graph and expand obtained colors to original graph

(about c @[i]cheaper then scalar coloring with n dofs/node )

n3

Colored parallel finite difference scheme ( Trilinos—NOX)

~ F(x + og) — F,(x)
_oF _ Filx+ %) o =alx+p

A X, 0

— Aj; belonging to the same color are computed simultanously

— Number of evaluations of F is governed by the bandwith, not by the size
of the problem.

Parallel colored finite differencing @ Natona



A 4

— Full approximation scheme (FAS) nonlinear V—cycle

— Algebraic multigrid hierarchy (smoothed/plain aggregation multigrid)
— Preconditioned nonlinear CG / quasi—Newton method

— Block colored finite differencing scheme

—_(Constraints

— Example

Outline @m
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Enforcement of constraints

o ol h

— The nonlinear preconditioner operates on A/ x only

— (Constraints are enforced by the underlying application

X Application

NOXinterface _ . X = C
F(X) -0 Interrace <« X = X
< X, F F =F(x) + CF(x)
- NOX nonlinear CG -

ML algebraic
multigrid hierachy

Ry[A P

NOX coarse interface

Constraints @ Matora
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Enforcement of constraints

o ol h

— The nonlinear preconditioner operates on A/ x only

— (Constraints are enforced by the underlying application

— To obtain a good multigrid preconditioner to the constrained problem,
the MG—hierachy has to build upon a modified A

- ~ = Application
aFi Fi(X + 661) — Fi(X) . _X) ~pp
ij o%; = 5 NOX interface < x~ = Cx

X,F F=F[x+CF{

>,
I

|

|

(...skipping some details and problems e.g. with frictionless contact)

Constraints @ ot
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Enforcement of constraints

o ol h

— The nonlinear preconditioner operates on A/ x only

— (Constraints are enforced by the underlying application

— To obtain a good multigrid approximation of the constrained problem,
the MG—hierachy has to build upon a modified A

— Coloring for finite differencing of A has to be based on
a constraint—modified graph

C\ O

Constraints @
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Enforcement of constraints

o ol h

— The nonlinear preconditioner operates on A/ x only

— (Constraints are enforced by the underlying application

— To obtain a good multigrid approximation of the constrained problem,
the MG—hierachy has to build upon a modified A

— Coloring for finite differencing of A has to be based on
a constraint—modified graph

Constraints @
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— Full approximation scheme (FAS) nonlinear V—cycle

— Algebraic multigrid hierarchy (smoothed/plain aggregation multigrid)
— Preconditioned nonlinear CG / quasi—Newton method

— Block colored finite differencing scheme

— Constraints

— Example
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shell discretization with thickness change
Radius/thickness = 100

Ogden hyperelastic material

Hydrostatic internal pressure load

19926 equations

implicit nonlinear dynamics (gen—a)

193 load steps, At = 0.01 s

Py bbb

©CCARAT
Institute for Structural Mechanics
University of Stuttgart, Germany

Inflated half sphere 1 @m



— 3—grid linear MG preconditioned ninCG
Chebychev on fine grid
DD-SGS on medium grid
LU on coarse grid

—> 3—grid nonlinear MG
preconditioned NInCG on al grids
smoothers as before

— 3—grid nonlinear MG
preconditioned matrixfree Newton—Krylov

snoothers as before
200 50—
1501 t [sec] 4] iterations
160 - 40-
140 35-
120 - 30-
100 25-
80- 20-
60: N 15:
40: 10:
s s e ¥
0 40 80 120 160 2000 0O 40 8 120 160 200

Inflated half sphere 1 @m



— nonlinear quasistatics,123 load steps
— 3—grid nonlinear MG
preconditioned NInCG on al grids
smoothers as before
—> 3—grid nonlinear MG
preconditioned nInCG on al grids
smoothers as before
3 adaptive near—nullgpace components

1400 30 .
| t[sec] iterations

1200 -

1000 -
20+

800 -+
600 - A

104
400 -

0l  adaptive SA 1
1 time step

0 40 80 120 0 40 80 120

Inflated half sphere 1
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— An algebraic nonlinear multigrid preconditioner is studied

— Evaluation of nonlinear residual on coarse grids is variational

— nonlinear CG / Newton as nonlinear smoothers

— Jacobian can be obtained by parallel block colored finite differencing

— Handling of constraints (some open issues)

— Algorithm is excellent for implicit methods in formerly explicit FE—code,
as such codes normally do not supply Jacobians but have a very fast

evaluation of the nonlinear function F

— Use adaptive smoothed aggregation MG [BREzINA ET AL. 2005]

Thanks to Ray Tuminaro, Kendall Pierson, Alan Williams, Russell Hooper

. Sandia
Conclusions @ National



