i ' 1
Next-generation iterative solvers

for next-generation computing:
Anasazi and Belos

Mark Hoemmen mhoemme@sandia.gov

Sandia National Laboratories
02 Nov 2011

Unclassified, .

unlimited release Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly San_dla
’ owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy’s National

SAND # 2011-8187 C National Nuclear Security Administration under contract DE-AC04-94AL85000. Laboratories

}‘ Who am 1?

» Postdoc at Sandia National Laboratories

¢+ Graduated UC Berkeley March 2010
» Research: “Scalable algorithms”

+ Interactions between algorithms and computer architectures
* Trilinos developer since Spring 2010

+ New, fast, accurate block orthogonalization (TSQR)

+ New communication-avoiding & fault-tolerant solvers

* Prototyped & running, not in Belos yet

¢ Sparse matrix I/O, utilities, bug fixes, and consulting
= Trilinos packages I've worked on:

+ Anasazi, Belos, Kokkos, Teuchos, Tpetra

Sandia
National
Laboratories

' 3

List of contributors

» Anasazi and Belos share many contributors
¢+ Anasazi came first
+ Belos shared design features & motivations

= Common lead:
¢ Heidi Thornquist

= Contributors:

¢ Chris Baker, David Day, Mike Heroux, Ulrich Hetmaniuk, Sarah
Knepper, Rich Lehoucq, Mark Hoemmen, Vicki Howle, Mike
Parks, Kirk Soodhalter, ...

Sandia
National
Laboratories

V ' 4
} Outline

= Motivations for Anasazi & Belos
+ Why are iterative solvers still hard?
+ Why block solvers?
+ Why decouple solvers from the linear algebra library?
+ Why are they templated on the Scalar type?

= Application highlights

= New solvers & features (since last TUG)
» Research & development efforts

» Future (ongoing) work

Sandia
National
Laboratories

A

y are Ax=b & Ax=Ax still hard?

100% .

oy = Often 2 80% runtime
o = Dominate runtime of
£ % - higher-level algorithms
S oo + Nonlinear solves,
& 30% optimization, statistics, ...

20%
10%
0%

» Harder to optimize
+ Bandwidth-bound
+ More communication

& Charon minus solver " Why we Care abOUt- .-

Solve time due to iter increase + New algorithms & kernels

u Solve time due to iter cost ¢ Software ﬂex|b|||ty to
“ Preconditioner setup develop & deploy them

128 256 512 1024 2048 4096

Procs

Sandia
National
Laboratories

_ ' ;
}' Why block solvers?

= “Block” solvers:
+ Resolve clusters of eigenvalues
+ Solve several right-hand sides at once

» Architecture-aware (= “avoid data movement”)

+ “Flops are cheap, bandwidth is money, latency is expensive”
— Kathy Yelick (LBNL & UC Berkeley)

+ Standard Krylov kernels dominated by data movement costs
+ Favor “block” kernels that amortize costs over many vectors

= Application-driven (= “rarely just one linear system”)
+ Needed to resolve tightly clustered eigenvalues

+ Block eigensolver = block linear solver (shift & invert)
+ Parameter studies, robustness, uncertainty, ...

» Lucky convergence of architecture and application!

Sandia
National
Laboratories

hy decouple solvers from
the linear algebra library (LAL)?

= “Any problem in computer science can be solved with
another level of indirection.”
¢ Butler Lampson, 1993 Turing Award lecture
» Rapid evolution of computer architectures
+ LAL architects & performance tuners must track them
+ Numerical algorithm developers != performance tuners
+ Free the former to focus on algorithmic evolution
= Data placement crucial for performance

¢ LAL must be free to store data how it likes
+ Solvers only interact with data through a few kernels

Sandia
National
Laboratories

Anasazi & Belos decoupled
from linear algebra library

* Previous packages (AztecOO, ARPACK) were not
+ “Reverse communication” interface, which means here:
» Decoupled from operator representation
« Still constrains vector representation
* Anasazi and Belos only constrain interface
¢ Compile-time polymorphic “traits” interface
+ [nterface cost is at most one function call

+ Solvers work with any linear algebra library
» Epetra, Tpetra, Thyra, ..., yours (wrapped)

Sandia
National
Laboratories

—

} Why are Anasazi & Belos
templated on the Scalar type?

» Arbitrary-precision algorithms

+ Some problems need extra precision

+ We can do CG & GMRES with
» double-double (128 bits), quad-double (256 bits), ...

+ Wish list: fully templated LAPACK

» Mixed-precision algorithms

+ Use the least precision necessary (e.g., float vs. double)
¢ Enable new algorithms that

» Use lower precision most of the time
« Use higher precision selectively

¢+ Save bandwidth & memory
= Avoid code duplication

Sandia
National
Laboratories

i o

Application highlights

Sandia
National _

10

Laboratories

- &
%nasazi application highlights

* Themis: Large data set analysis tool
¢ Canonical Correlation Analysis

¢+ Computed by eigen{value + vector} solve(s)
+ Anasazi provides efficient parallel implementation

= Schrodinger's equation solver
¢ Part of QCAD (Quantum CAD) LDRD
¢ Equations set up in Albany
+ Anasazi accessed through LOCA
» Block Krylov-Schur with > 2240 unknowns
+ 1,728,684,249,600 (> 1 trillion!) unknowns

+ k-eigenvalue problem in Denovo (reactor design)
¢ 200K cores of Jaguar

)

11

Sandia
National
Laboratories

12

elos application highlights

* GLIMMER Community Ice Sheet Model
+ Flexible GMRES inner-outer iteration, driven by NOX
+ Trilinos driven by Andy Salinger’s Piro package
¢ Fortran 95 (they have custom Trilinos wrappers)

+ Provided feedback that helped us fix a performance bug
« Teuchos::TimeMonitor::summarize()

= LifeV finite-element library
¢ Fruitful collaboration with EPFL visitors

= Belos already being integrated into more codes
¢ Epetra - Tpetra requires AztecOO - Belos
+ Expect heavier Belos use as Tpetra-based stack matures

Sandia
National
Laboratories

i o

New solvers and features

Sandia
National _

13

Laboratories

#)ck Recycling GMRES

(Block GCRO-DR)

14

= Algorithm: Kirk Soodhalter (Temple U, Daniel Szyld)
» Belos implementation: Kirk S. and Mike Parks
= Reuse basis from previous solves to accelerate

sequences of solves

= Example: Tramonto
» Fluid density functional theory

» Hard spheres w/ electrostatics
and attractions

= Newton iteration: 7 solves

= Savings:
= 1 RHS: 60 matvecs (36%)
= 3 RHS: 50 matvecs (40%)

30

5

— —*— GMRES, 1 RHS
—*— BGMRES, 3 RHS
—*-GCRODR, 1 RHS
—* ~“BGCRODR, 3 RHS

———————————
————————

Sandia
National
Laboratories

SQR: Least-squares

solver (1 of 2)

= Algorithm:

*

C. C. Paige & M. A. Saunders (Stanford)

Belos implementation:

*

Sarah Knepper (Emory, now Intel) and David Day

LSQR solves

*

*

Nonsymmetric linear systems
Linear and damped least squares

Algorithmic features

*

*

*

*

Detects incompatible Ax=b; returns least-squares solution
Tolerates singular matrix A; works with nonsquare A
Computes sparse SVD: sharp condition number bounds
Fixed memory footprint (but more matvecs than GMRES)

)

15

Sandia
National
Laboratories

'
il 'LSQR: Least-squares
solver (2 of 2)

» Use case: Adaptive-precision solver
+ Mixed & arbitrary precision an important Belos motivation

+ Prefer single to double precision

* Memory bandwidth and memory per node constrained on
modern computers

+ But A may be singular in single, not in double
+ while (cond(A) > 1/ eps(precision)):
* Increase precision
« Solve again
= Software notes
+ Requires transpose: first Belos solver that does!
+ This helped us discover and fix Belos’ Epetra wrappers

)

16

Sandia
National
Laboratories

}i MINRES: Linear solver

= Algorithm: Paige and Saunders

» Belos implementation: Nico Schlomer

+ With help from Heidi Thornquist and Mark Hoemmen
» Solves symmetric indefinite linear systems

+ Fixed memory footprint

» Result of Nico’s TUG 2010 presentation!

+ Nico: “You can see CG deflating the negative eigenvalues...”
* me: [cringes visibly]
¢+ |nspired Nico to contribute MINRES implementation

Sandia
National
Laboratories

'
Mter orthogonalizations,

more easily available

= Tall Skinny QR (TSQR) orthogonalization method
+ 2008 UC Berkeley tech report, SC09, IPDPS 2011, ...
+ O(1) reductions, independent of number of vectors
= Now works with Tpetra on any CPU node
+ Kokkos Node = TPINode, TBBNode, SerialNode
+ Algorithm specialized for Kokkos node type

= Also works with Epetra, if Trilinos built with Tpetra

In Belos: Available via OrthoManagerFactory

+ Decouples solvers from orthogonalization setup
¢ Factory handles interpreting parameters
» Sublist “Orthogonalization Parameters”
+ Available in GCRODR, soon in other GMRES variants

)

18

Sandia
National
Laboratories

i nos

Research & development efforts

Sandia
National _

19

Laboratories

' 20

mmunication-avoiding solvers

= “Communication” = data movement
+ Between levels of memory hierarchy (bandwidth)
+ Between parallel processors (latency)
+ Slow & getting slower exponentially relative to flops
» Standard Krylov methods are communication-bound

= “Communication-avoiding” (CA) solvers:
+ Use different kernels that communicate less
¢ Details: Hoemmen 2010 (PhD thesis), ...
= Trilinos prototype of CA-GMRES
+ Built on Tpetra and Belos; already getting speedups
+ ~ 3 weeks of work to deploy in Belos
» Long-term collaboration with UC Berkeley and others

+ Kernels and kernel optimizations
¢+ New CA algorithms & lower bounds theory

Sandia
National
Laboratories

\

Fault-tolerant solvers

Exascale systems will be less reliable
¢ |ncluding incorrect data and computations
+ Reliability has energy and performance cost

lterative solvers are...

¢ Sensitive to unreliable data and computations
+ Faults may cause incorrect results undetectably

“Selective reliability” enables new solvers
+ System exposes reliability tradeoffs
¢ Algorithm identifies what must be reliable
¢ This requires new iterative solver algorithms!

Fruitful collaboration with systems researchers

) 1

¢ Sandia’s “9 Lives” Group (Patrick Bridges, Kurt Ferreira)

)

21

Sandia
National
Laboratories

Fault-Tolerant GMRES

= An inner-outer iteration
¢ Based on Flexible GMRES

+ Inner solver “preconditions’
outer solver

+ |nner solver runs unreliably
¢ Quter solver runs reliably

= Advantages

¢+ Reuse any existing solver
stack as “inner solver”

+ Most time spent in cheap
unreliable mode

+ Faults only delay, don'’t
prevent convergence

+ Can exploit fault detection if
available, but not necessary

Relative residual error (logbase 10 scale)

Fault-tolerant GMRES: Number of outer iterations
vs. failure probability of inner solve

)

Relative residual 2-norm (log scale

—a— Failure probability O
—e— Failure probability 0.25
Failure probability 0.5

FT-GMRES: Convergence decay
proportional to number of soft faults.

10"}

10° }

3 4 5 6 7 8 9 10
Quter iteration number

FT-GMRES vs. (restarted) GMRES on WATT1 matrix,
SpMV failure probability 0.1

—a— PT-GMRES(50,20)
GMRES(50), 20 restart cycles
—e— GMRES(1000)

Classic Non-restarted
GMRES

Standard Restarted

GMRES
A a)
1 1 I I I FT-nGMRnES 1
4 6 8 10 12 14 16 18 20

QOuter iteration number

o

Future (ongoing) work

23

Laboratories

} Future (ongoing) work

» Refactor solvers’ interface to linear algebra?
+ Do Anasazi and Belos need fused computational kernels?

= |mprove support for inner-outer iterations?

* |mprove robustness to rounding-error effects of
hybrid parallelism?

)

24

Sandia
National
Laboratories

25

use computational kernels?

* Anasazi & Belos currently assume separate kernels
+ One kernel = one linear algebra library routine call
= Examples of fused kernels:
* w = A*x, alpha = dot(w,x)
* W=A*X,z=AT*y
= Good or harmless for performance
+ Avoid overhead of starting & stopping tasks
¢+ |ncrease task duration = maximize data locality
+ May allow launching kernel(s) asynchronously

= How would this change solvers?
¢ Solver code changes, but algorithms don’t (much)
+ Low-risk evaluation using Chris Baker’s Tpetra::RTI CG

Sandia
National
Laboratories

' 26
#mprove support for

inner-outer iterations?

= Currently: Outer solver treats inner as black box

= Some algorithms want communication between inner
and outer solves

+ Example: inexact Krylov (Szyld et al.)
* Outer solver adjusts inner tolerance based on outer ||r,||

¢+ Example: Fault-Tolerant GMRES (Heroux, Hoemmen et al.)
* Inner solve events may affect outer solve behavior

= Can we support this without rewriting solvers (much)?

Sandia
National
Laboratories

'

Mprove robustness to

effects of hybrid parallelism?

Thread parallelism may not be deterministic

Parallel BLAS & LAPACK may give different results
on different MPI| processes

Anasazi & Belos expect same evaluation of projected
(small dense) problem on different processes

“Continuous” perturbation affects discrete decisions
+ Count of eigenvalues in a cluster
+ Convergence criteria for linear solves

If some processes go on and others stop:
¢ Crash or deadlock

To fix: No hard math, but redesign of all “parallel
decisions” and continuous = discrete transitions

Sandia
National
Laboratories

} Summary

Linear algebra is still hard

Advantages of Anasazi & Belos
+ Block algorithms desired by applications & perform well
* Solvers decoupled from matrix & vector storage layout
+ Mixed- & arbitrary-precision algorithms through templat
+ Can solve problems with > 2 billion unknowns

Critical for manycore performance
+ Fully compatible with Tpetra & Epetra stacks
+ Simplifies Epetra - Tpetra transition

Advanced new algorithms

Ing

)

28

Sandia
National
Laboratories

i o

Any gquestions?

Sandia
National

Jig o

Extra Slides

Sandia
National

' 31

Design evolution (extra)

» |eave reduction results on the compute device?
¢ Current interface returns scalar results from GPU to CPU
+ |nstead, could leave results on GPU, fire kernels asynch.
¢ Carter Edwards’ Gram-Schmidt prototype (ValueView)
+ Solver code changes a LOT; algorithms may too

« Can'’t evaluate convergence tests on the GPU
« Batch up several iterations

+ Not so effective with MP| and multiple GPUs
* Must communicate the reduction results anyway
» Can they go straight from the GPU to the network interface

Sandia
National
Laboratories

bstraction lets solvers

4 track architecture evolution

= LAL (not solvers) carries evolution burden
+ Solver developers often not performance tuners
+ They can focus on algorithmic evolution

= LAL (not solvers) controls all...

¢ Data placement
» Needed for accelerator architectures (e.g., GPUs)
» Performance critical on multicore CPUs

+ [ntranode (thread) & internode (MPI) parallelization

» Solver developers don’t need to write OpenMP, CUDA, ...

» Disadvantages
+ LAL interface constrains cross-kernel optimizations

)

32

Sandia
National
Laboratories

