
Mark Hoemmen mhoemme@sandia.gov
Sandia National Laboratories

02 Nov 2011

1

Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly !
owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energyʼs !

National Nuclear Security Administration under contract DE-AC04-94AL85000.!

Next-generation iterative solvers
for next-generation computing:

Anasazi and Belos

Unclassified,
unlimited release.

SAND # 2011-8187 C

2

Who am I?

  Postdoc at Sandia National Laboratories
  Graduated UC Berkeley March 2010

  Research: “Scalable algorithms”
  Interactions between algorithms and computer architectures

  Trilinos developer since Spring 2010
  New, fast, accurate block orthogonalization (TSQR)
  New communication-avoiding & fault-tolerant solvers

•  Prototyped & running, not in Belos yet
  Sparse matrix I/O, utilities, bug fixes, and consulting

  Trilinos packages I’ve worked on:
  Anasazi, Belos, Kokkos, Teuchos, Tpetra

3

List of contributors

  Anasazi and Belos share many contributors
  Anasazi came first
  Belos shared design features & motivations

  Common lead:
  Heidi Thornquist

  Contributors:
  Chris Baker, David Day, Mike Heroux, Ulrich Hetmaniuk, Sarah

Knepper, Rich Lehoucq, Mark Hoemmen, Vicki Howle, Mike
Parks, Kirk Soodhalter, …

  Motivations for Anasazi & Belos
  Why are iterative solvers still hard?
  Why block solvers?
  Why decouple solvers from the linear algebra library?
  Why are they templated on the Scalar type?

  Application highlights
  New solvers & features (since last TUG)
  Research & development efforts
  Future (ongoing) work

4

Outline

  Often ≥ 80% runtime
  Dominate runtime of

higher-level algorithms
  Nonlinear solves,

optimization, statistics, …

  Harder to optimize
  Bandwidth-bound
  More communication

  Why we care about…
  New algorithms & kernels
  Software flexibility to

develop & deploy them

5

Why are Ax=b & Ax=Λx still hard?

(a) Charon timing breakdown (b) Increase in iterations

Fig. 1. Strong scaling analysis of Charon on Sandia Tri-Lab Linux Capacity Cluster
for 28 million unknowns.

As the number of MPI tasks increases, the number of linear solver iterations
increases (Figure 1(b)). Figure 1(a) shows that these extra iterations require an
increasingly higher percentage of the total runtime as the number of MPI tasks
increase, resulting in a degradation in the parallel performance.

By having fewer (but larger) subdomains, better convergence can be ob-
tained for the linear solver. With fewer subdomains, the solvers for these larger
subdomains must be parallel in order to maintain the overall scalability of the
algorithm. This leads to a two-level model of parallelism, where MPI is used
to communicate between subdomains and a second level of parallelism is used
within each subdomain. One approach is to also use MPI to obtain parallelism
at the subdomain level (e.g., [4]). Another approach, which we explore in this
paper, utilizes multithreading to obtain parallelism at the subdomain level. This
approach is limited in that each subdomain does not extend beyond the pro-
cessor boundaries. However, we feel that as the number of cores per processor
continues to increase, this will become less important and threads may be a
better approach for exploiting the shared memory architecture on the node.

Keeping the iteration count low is not sufficient, however, to obtain per-
formance gains over MPI-only implementations. The shared memory numerical
kernels that run on each multi-core node also need to be scalable. It is particu-
larly important to have a scalable shared memory implementation of a triangular
solver to run on each node since this kernel will be executed for each iteration
of the linear solver. The focus of this paper is to study the various factors that
affect the performance of this shared memory triangular solver kernel in the
pursuit of a sufficiently scalable algorithm.

1.2 Level-set triangular solver

We focus our attention on improving the performance of a level-set triangular
solver for sparse matrices as described in [5]. Below we describe the process for
lower triangular matrices, but the upper triangular case is analogous. First, we
express the data dependencies of the triangular solve for the lower triangular

(a) Charon timing breakdown (b) Increase in iterations

Fig. 1. Strong scaling analysis of Charon on Sandia Tri-Lab Linux Capacity Cluster
for 28 million unknowns.

As the number of MPI tasks increases, the number of linear solver iterations
increases (Figure 1(b)). Figure 1(a) shows that these extra iterations require an
increasingly higher percentage of the total runtime as the number of MPI tasks
increase, resulting in a degradation in the parallel performance.

By having fewer (but larger) subdomains, better convergence can be ob-
tained for the linear solver. With fewer subdomains, the solvers for these larger
subdomains must be parallel in order to maintain the overall scalability of the
algorithm. This leads to a two-level model of parallelism, where MPI is used
to communicate between subdomains and a second level of parallelism is used
within each subdomain. One approach is to also use MPI to obtain parallelism
at the subdomain level (e.g., [4]). Another approach, which we explore in this
paper, utilizes multithreading to obtain parallelism at the subdomain level. This
approach is limited in that each subdomain does not extend beyond the pro-
cessor boundaries. However, we feel that as the number of cores per processor
continues to increase, this will become less important and threads may be a
better approach for exploiting the shared memory architecture on the node.

Keeping the iteration count low is not sufficient, however, to obtain per-
formance gains over MPI-only implementations. The shared memory numerical
kernels that run on each multi-core node also need to be scalable. It is particu-
larly important to have a scalable shared memory implementation of a triangular
solver to run on each node since this kernel will be executed for each iteration
of the linear solver. The focus of this paper is to study the various factors that
affect the performance of this shared memory triangular solver kernel in the
pursuit of a sufficiently scalable algorithm.

1.2 Level-set triangular solver

We focus our attention on improving the performance of a level-set triangular
solver for sparse matrices as described in [5]. Below we describe the process for
lower triangular matrices, but the upper triangular case is analogous. First, we
express the data dependencies of the triangular solve for the lower triangular

  “Block” solvers:
  Resolve clusters of eigenvalues
  Solve several right-hand sides at once

  Architecture-aware (= “avoid data movement”)
  “Flops are cheap, bandwidth is money, latency is expensive”

 – Kathy Yelick (LBNL & UC Berkeley)

  Standard Krylov kernels dominated by data movement costs
  Favor “block” kernels that amortize costs over many vectors

  Application-driven (= “rarely just one linear system”)
  Needed to resolve tightly clustered eigenvalues
  Block eigensolver  block linear solver (shift & invert)
  Parameter studies, robustness, uncertainty, …

  Lucky convergence of architecture and application!

6

Why block solvers?

  “Any problem in computer science can be solved with
another level of indirection.”
  Butler Lampson, 1993 Turing Award lecture

  Rapid evolution of computer architectures
  LAL architects & performance tuners must track them
  Numerical algorithm developers != performance tuners
  Free the former to focus on algorithmic evolution

  Data placement crucial for performance
  LAL must be free to store data how it likes
  Solvers only interact with data through a few kernels

7

Why decouple solvers from
the linear algebra library (LAL)?

  Previous packages (AztecOO, ARPACK) were not
  “Reverse communication” interface, which means here:

•  Decoupled from operator representation
•  Still constrains vector representation

  Anasazi and Belos only constrain interface
  Compile-time polymorphic “traits” interface
  Interface cost is at most one function call
  Solvers work with any linear algebra library

•  Epetra, Tpetra, Thyra, …, yours (wrapped)

8

Anasazi & Belos decoupled
from linear algebra library

  Arbitrary-precision algorithms
  Some problems need extra precision
  We can do CG & GMRES with

•  double-double (128 bits), quad-double (256 bits), …
  Wish list: fully templated LAPACK

  Mixed-precision algorithms
  Use the least precision necessary (e.g., float vs. double)
  Enable new algorithms that

•  Use lower precision most of the time
•  Use higher precision selectively

  Save bandwidth & memory

  Avoid code duplication

9

Why are Anasazi & Belos
templated on the Scalar type?

10

Application highlights

  Themis: Large data set analysis tool
  Canonical Correlation Analysis
  Computed by eigen{value + vector} solve(s)
  Anasazi provides efficient parallel implementation

  Schrödinger's equation solver
  Part of QCAD (Quantum CAD) LDRD
  Equations set up in Albany
  Anasazi accessed through LOCA

  Block Krylov-Schur with > 2^40 unknowns
  1,728,684,249,600 (> 1 trillion!) unknowns
  k-eigenvalue problem in Denovo (reactor design)
  200K cores of Jaguar

11

Anasazi application highlights

  GLIMMER Community Ice Sheet Model
  Flexible GMRES inner-outer iteration, driven by NOX
  Trilinos driven by Andy Salinger’s Piro package
  Fortran 95 (they have custom Trilinos wrappers)
  Provided feedback that helped us fix a performance bug

•  Teuchos::TimeMonitor::summarize()

  LifeV finite-element library
  Fruitful collaboration with EPFL visitors

  Belos already being integrated into more codes
  Epetra  Tpetra requires AztecOO  Belos
  Expect heavier Belos use as Tpetra-based stack matures

12

Belos application highlights

13

New solvers and features

  Algorithm: Kirk Soodhalter (Temple U, Daniel Szyld)
  Belos implementation: Kirk S. and Mike Parks
  Reuse basis from previous solves to accelerate

sequences of solves

14

  Example: Tramonto
  Fluid density functional theory
  Hard spheres w/ electrostatics

and attractions
  Newton iteration: 7 solves
  Savings:

  1 RHS: 60 matvecs (36%)
  3 RHS: 50 matvecs (40%)

Block Recycling GMRES
(Block GCRO-DR)

  Algorithm:
  C. C. Paige & M. A. Saunders (Stanford)

  Belos implementation:
  Sarah Knepper (Emory, now Intel) and David Day

  LSQR solves
  Nonsymmetric linear systems
  Linear and damped least squares

  Algorithmic features
  Detects incompatible Ax=b; returns least-squares solution
  Tolerates singular matrix A; works with nonsquare A
  Computes sparse SVD: sharp condition number bounds
  Fixed memory footprint (but more matvecs than GMRES)

15

LSQR: Least-squares
solver (1 of 2)

  Use case: Adaptive-precision solver
  Mixed & arbitrary precision an important Belos motivation
  Prefer single to double precision

•  Memory bandwidth and memory per node constrained on
modern computers

  But A may be singular in single, not in double
  while (cond(A) > 1 / eps(precision)):

•  Increase precision
•  Solve again

  Software notes
  Requires transpose: first Belos solver that does!
  This helped us discover and fix Belos’ Epetra wrappers

16

LSQR: Least-squares
solver (2 of 2)

  Algorithm: Paige and Saunders
  Belos implementation: Nico Schlömer

  With help from Heidi Thornquist and Mark Hoemmen

  Solves symmetric indefinite linear systems
  Fixed memory footprint

  Result of Nico’s TUG 2010 presentation!
  Nico: “You can see CG deflating the negative eigenvalues…”
  me: [cringes visibly]
  Inspired Nico to contribute MINRES implementation

17

MINRES: Linear solver

  Tall Skinny QR (TSQR) orthogonalization method
  2008 UC Berkeley tech report, SC09, IPDPS 2011, …
  O(1) reductions, independent of number of vectors

  Now works with Tpetra on any CPU node
  Kokkos Node = TPINode, TBBNode, SerialNode
  Algorithm specialized for Kokkos node type

  Also works with Epetra, if Trilinos built with Tpetra
  In Belos: Available via OrthoManagerFactory

  Decouples solvers from orthogonalization setup
  Factory handles interpreting parameters

•  Sublist “Orthogonalization Parameters”
  Available in GCRODR, soon in other GMRES variants

18

Faster orthogonalizations,
more easily available

19

Research & development efforts

  “Communication” = data movement
  Between levels of memory hierarchy (bandwidth)
  Between parallel processors (latency)
  Slow & getting slower exponentially relative to flops

  Standard Krylov methods are communication-bound
  “Communication-avoiding” (CA) solvers:

  Use different kernels that communicate less
  Details: Hoemmen 2010 (PhD thesis), …

  Trilinos prototype of CA-GMRES
  Built on Tpetra and Belos; already getting speedups
  ~ 3 weeks of work to deploy in Belos

  Long-term collaboration with UC Berkeley and others
  Kernels and kernel optimizations
  New CA algorithms & lower bounds theory

20

Communication-avoiding solvers

  Exascale systems will be less reliable
  Including incorrect data and computations
  Reliability has energy and performance cost

  Iterative solvers are…
  Sensitive to unreliable data and computations
  Faults may cause incorrect results undetectably

  “Selective reliability” enables new solvers
  System exposes reliability tradeoffs
  Algorithm identifies what must be reliable
  This requires new iterative solver algorithms!

  Fruitful collaboration with systems researchers
  Sandia’s “9 Lives” Group (Patrick Bridges, Kurt Ferreira)

21

Fault-tolerant solvers

  An inner-outer iteration
  Based on Flexible GMRES
  Inner solver “preconditions”

outer solver
  Inner solver runs unreliably
  Outer solver runs reliably

  Advantages
  Reuse any existing solver

stack as “inner solver”
  Most time spent in cheap

unreliable mode
  Faults only delay, don’t

prevent convergence
  Can exploit fault detection if

available, but not necessary

FT-GMRES: Convergence decay
proportional to number of soft faults.

Standard Restarted
GMRES

FT-GMRES

Classic Non-restarted
GMRES

Fault-Tolerant GMRES

23

Future (ongoing) work

  Refactor solvers’ interface to linear algebra?
  Do Anasazi and Belos need fused computational kernels?

  Improve support for inner-outer iterations?

  Improve robustness to rounding-error effects of
hybrid parallelism?

24

Future (ongoing) work

  Anasazi & Belos currently assume separate kernels
  One kernel = one linear algebra library routine call

  Examples of fused kernels:
  w = A*x, alpha = dot(w,x)
  w = A*x, z = AT * y

  Good or harmless for performance
  Avoid overhead of starting & stopping tasks
  Increase task duration  maximize data locality
  May allow launching kernel(s) asynchronously

  How would this change solvers?
  Solver code changes, but algorithms don’t (much)
  Low-risk evaluation using Chris Baker’s Tpetra::RTI CG

25

Fuse computational kernels?

  Currently: Outer solver treats inner as black box
  Some algorithms want communication between inner

and outer solves
  Example: inexact Krylov (Szyld et al.)

•  Outer solver adjusts inner tolerance based on outer ||rk||
  Example: Fault-Tolerant GMRES (Heroux, Hoemmen et al.)

•  Inner solve events may affect outer solve behavior

  Can we support this without rewriting solvers (much)?

26

Improve support for
inner-outer iterations?

  Thread parallelism may not be deterministic
  Parallel BLAS & LAPACK may give different results

on different MPI processes
  Anasazi & Belos expect same evaluation of projected

(small dense) problem on different processes
  “Continuous” perturbation affects discrete decisions

  Count of eigenvalues in a cluster
  Convergence criteria for linear solves

  If some processes go on and others stop:
  Crash or deadlock

  To fix: No hard math, but redesign of all “parallel
decisions” and continuous  discrete transitions

27

Improve robustness to
effects of hybrid parallelism?

  Linear algebra is still hard
  Advantages of Anasazi & Belos

  Block algorithms desired by applications & perform well
  Solvers decoupled from matrix & vector storage layout
  Mixed- & arbitrary-precision algorithms through templating
  Can solve problems with > 2 billion unknowns

  Critical for manycore performance
  Fully compatible with Tpetra & Epetra stacks
  Simplifies Epetra  Tpetra transition

  Advanced new algorithms

28

Summary

29

Any questions?

30

Extra Slides

  Leave reduction results on the compute device?
  Current interface returns scalar results from GPU to CPU
  Instead, could leave results on GPU, fire kernels asynch.
  Carter Edwards’ Gram-Schmidt prototype (ValueView)
  Solver code changes a LOT; algorithms may too

•  Can’t evaluate convergence tests on the GPU
•  Batch up several iterations

  Not so effective with MPI and multiple GPUs
•  Must communicate the reduction results anyway
•  Can they go straight from the GPU to the network interface

31

Design evolution (extra)

  LAL (not solvers) carries evolution burden
  Solver developers often not performance tuners
  They can focus on algorithmic evolution

  LAL (not solvers) controls all…
  Data placement

•  Needed for accelerator architectures (e.g., GPUs)
•  Performance critical on multicore CPUs

  Intranode (thread) & internode (MPI) parallelization
•  Solver developers don’t need to write OpenMP, CUDA, …

  Disadvantages
  LAL interface constrains cross-kernel optimizations

32

Abstraction lets solvers
track architecture evolution

