
1

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,

a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National

Nuclear Security Administration under contract DE-AC04-94AL85000.

CMake TPL Support

Using Find_package

Pros/Cons

Will Dicharry, Brent

Perschbacher

SAND 2011-8211P

2 2

Current Issues

1. CMake Compatibility

 We currently don’t use standard interfaces defined by Cmake.
 find_package(<name> [REQUIRED] [COMPONENTS] component…)

 Foo_INCLUDE_DIRS, Foo_LIBRARIES, Foo_FOUND, …

 We typically don’t use existing Find*.cmake logic.
 Exceptions: CUDA, Qt

2. TPL Components

 Some TPLs have multiple components.
 Boost

 Packages aren’t always interested in all provided components.
 Boost, HDF5

3. TPL versions

 Some packages need a different version of a TPL than another

package
 SuperLU

4. TPL dependencies

 TPLs depend on one another.
 ExodusII, NetCDF4, HDF5

 Dependencies can be required or optional.

3 3

CMake Compatibility

 CMake is widely used.

 Client applications/libraries expect find_package interface.

 Some Find Modules are robust.

 Boost

 Qt

 CUDA

 Trilinos

 Some aren’t.

 MPI

 Can override behavior of FindFoo.cmake at the project level by setting

CMAKE_MODULE_PATH.

 Not locked into the system implementation.

 Utilizing interfaces that developers expect improves interoperability.

4 4

TPL Components/Versions

 Some packages depend only on certain components of TPLs.

 Some subpackages depend only on certain components of TPLs.

 find_package provides a standard interface for handling this.

 find_package(Foo COMPONENTS bar baz)

 Foo_LIBRARIES, Foo_bar_LIBRARY, Foo_baz_LIBRARY

 TPL dependency isn’t all or nothing.

 Packages can choose a minimal set of dependencies.

 Language bindings.

 Specific versions of TPLs are sometimes required.

 find_package(Foo 4.3.7 [EXACT])

 Interface is distinct from Trilinos package architecture dependencies.

 Inconsistent

5 5

TPL Dependencies

 Some TPLs depend on other TPLs.

 Current options:

 TPL1 depends on TPL2 -> put TPL2 libraries in TPL1.

 Client packages enable both manually.

 Solution: Find_package can call find_package internally.

 Similar to option 1.

 Duplicates possible.

 Handles REQUIRED/COMPONENTS issues nicely.

 What about optional dependencies?

 Probably will have issues crossing between system/custom find

modules.

6 6

TPL Support Options

 Determine how we will work with current dependencies structure:

1. Packages call find_package?

 Dependency decisions are made by packages.

 How do we handle conditional compilation?

 Would need to change package code.

2. Done from package architecture?

 Global dependency decisions based on complete package set.

 How to handle REQUIRED/COMPONENTS?

 Transparent to packages.

7 7

Conclusion

 Any other requirements we’re missing

 Cmake compatibility

 TPL components

 TPL versions

 TPL dependencies

 Who would like to be the involved in the design?

 Anyone opposed to moving to find_package?

8 8

Future Directions

 Automation of TPL build and install.

 The new Jenkins test setup provides a build farm with a variety of

platforms (~20 machines currently).

 Jenkins can dynamically distribute testing loads.

 How do we make sure the right TPLs are available?

 Options:
 TPL extra repository

 Find modules that download

 Package dependencies using find_package.

 Does it make sense to use find_package for Trilinos package

dependencies?

 This might assist with some of the subpackage issues.
 Find_package(Thyra COMPONENTS Core EpetraAdapters)

