Kokkos Tutorial

A Trilinos package for manycore performance portability

H. Carter Edwards,
Christian Trott, and
Daniel Sunderland

Trilinos User Group (TUG)
November 4, 2013
SAND2013-9404P
Acknowledgements and a little History

- **Kokkos (classic)** – internal manycore portability layer for Tpetra
 - Chris Baker – primary developer

- **Kokkos (array)** – package for manycore performance portability
 - Developers: Carter Edwards (PI), Daniel Sunderland, Christian Trott
 - Alpha users: Eric Phipps, Mark Hoemmen, Matt Bettencourt, Eric Cyr
 - Consultants: Mike Heroux, Si Hammond

- **Current Funding**
 - ASC Computational Systems and Software Environment (CSSE)
 Next-Generation Computing Technologies / Heterogeneous Computing
 - UQ-on-GPU LDRD – support for embedded UQ data types
 - Kokkos/Qthreads LDRD – task/data/vector parallelism (started Oct’13)

- **Prior Funding**
 - Mantevo LDRD – early concepts and prototypes
Goals: Portable, Performant, and Usable

- Portable to Advanced Manycore Architectures
 - Multicore CPU, NVIDIA GPU, Intel Xeon Phi (potential: AMD Fusion)
 - Maximize amount of user (application/library) code that can be compiled without modification and run on these architectures
 - Minimize amount of architecture-specific knowledge that a user is required to have
 - Allow architecture-specific tuning to easily co-exist
 - Only require C++1998 standard compliant

- Performant
 - Portable user code performs as well as architecture-specific code
 - Thread scalable – not just thread safety (no locking!)

- Usable
 - Small, straight-forward application programmer interface (API)
 - Constraint: don’t compromise portability and performance
Collection of Subpackages / Libraries

- Core – lowest level portability layer
 - Parallel dispatch and multidimensional arrays for manycore devices
 - Soon to enter Trilinos “Primary Stable” status

- Containers – more sophisticated than core arrays
 - UnorderedMap – fast find and thread scalable insert
 - Very recent R&D success, thread scalable insert is a unique capability
 - Vector – subset of std::vector functionality to ease porting
 - Trilinos “Experimental” status

- LinAlg – primary interface for Tpetra
 - Sparse matrices and linear algebra operations
 - Wrappers to vendors’ libraries
 - Trilinos “Experimental” status

- Examples – for this tutorial and beyond
 - Mini-applications / mini-drivers
Outline

- Core: Fundamental Concepts
 - Core: Views to Arrays
 - Core: Views to Arrays – Advanced Features
 - Core: Parallel Dispatch of Functors
 - Core: Parallel Correctness and Performance
 - Core: Device Initialization and Finalization
 - Core: Performance Evaluation
 - Core: Plans
 - Example: Unordered map global-to-local ids
 - Example: Finite element integration and nodal summation
 - Example: Particle interactions in non-uniform neighborhoods
Core: Fundamental Concepts

Diversity of devices and associated performance requirements

- Performance heavily depends upon device specific requirements for memory access patterns
 - Blocking, striding, alignment, tiling, ...
 - NUMA core-memory affinity requires first touch and consistent access
 - CPU vector units require stride-one access and cache-line alignment
 - GPU vector units require coalesced access and cache-line alignment

- “Array of Structures” vs. “Structure of Arrays” dilemma
 - This has been the wrong question

- What abstraction required for performance portability?
 - This is the right question
 - Answer: multidimensional arrays with polymorphic layout
Core: Fundamental Concepts

Two abstractions: (1) Host/Devices

- Host process dispatches work to manycore device(s)
 - Host process is the ‘main’ function
 - Host processes dispatches thread-parallel work to device
 work is computation and data
 - “Device” may be physical (e.g., GPU) or logical:
 partition 16core CPU into 1core “host process” and 15core “device”

- Host process interacts with MPI, Kokkos does not
 - “MPI+X” : Kokkos is a potential “X”
 - Kokkos is orthogonal to MPI – devoid MPI datatypes and calls to MPI

- Multiple memory spaces
 - Disparate: host main memory vs. GPU on-card memory
 - Integrated: main memory, L3/L2/L1 cache, registers
 - Anticipate increasing complexity of memory architectures
Core: Fundamental Concepts

Two abstractions: (2) Multidimensional Arrays

- **Multidimensional Arrays, with a twist**
 - Map multi-index \((i,j,k,...) \leftrightarrow\) memory location on the device
 - Efficient: index computation and memory use
 - Map is derived from an array Layout
 - Choose Layout for device-specific (optimal) memory access pattern
 - Make layout changes transparent to the user code;
 - IF the user code honors the simple API: \(a(i,j,k,...)\)

Separate user’s index space from memory layout
Core: Fundamental Concepts
Implementation and similar work

- Implemented C++ template meta-programming
 - Compile-time polymorphism for device back-ends and array layouts
 - C++1998 standard; would be nice to require C++2011 for lambdas, ...

- Similarly motivated libraries:
 - Intel’s TBB: more sophisticated parallel dispatch capabilities,
 CPU only, no data structure abstractions
 - NVIDIA’s Thrust: similar simple parallel dispatch capabilities, only vector
 data structures, no array layout
 - MS C++AMP: close, but uses a proprietary language extension

- Language extensions: OpenMP, OpenACC, OpenCL, CUDA, Cilk,
 - Lacking data structure abstractions to manage access patterns
Outline

- Core: Fundamental Concepts
 - Core: Views to Arrays
 - Core: Views to Arrays – Advanced Features
 - Core: Parallel Dispatch of Functors
 - Core: Parallel Correctness and Performance
 - Core: Device Initialization and Finalization
 - Core: Performance Evaluation
 - Core: Plans
Core : Views to Arrays

View to multidimensional array of “value” type in device memory

- View< double ** [3][8] , Device > a ;
 - template class View: A view to an Array on a Device
 - Runtime and compile-time dimensions: example [N][M][3][8]

- “value” type of an array : ~ plain-old-data (pod) type
 - E.g., ‘double’ (in this example), ‘float’, ‘int’, ‘long int’, ...
 - A pure ‘memcpy’ will have the correct result
 - Does not contain pointers to allocated memory

- ArraySpec template argument = ‘double**[3][8]’ in this example
 - Each ‘*’ denotes a runtime specified dimension
 - Each ‘[#]’ denotes a compile-time specified dimension
 - 0-8 runtime dimensions denoted by ‘*’
 - 0-8 compile-time dimensions denoted by [#]
 - Up to 8 runtime + compile-time dimensions (maximum rank)
Core : Views to Arrays

View to multidimensional array of “value” type in device memory

- `View< ArraySpec , Device > a ;`
 - Query dimensions: `a.dimension_#() OR a.dimension(#)` where `# ∈ [0..7]`

- Why runtime + compile-time dimensions? PERFORMANCE!
 - Array layout computation is faster with compile-time dimensions
 - If a dimension is known at compile time then specify it

- Advanced feature: support for aggregate “value” types
 - Intrinsic “value” type required for optimal array layout
 - but we need ‘complex’ and other aggregate “value” types
 - ... more on this later ...
Core: Views to Arrays

Accessing array data members: \[a(i_0, i_1, i_2, i_3, \ldots) \]

- Access array data via `View::operator()`

\[
\text{template}<\ \text{typename intType}_0,\ \text{typename intType}_1,\ \ldots> \\
\text{ValueType} & \ \text{View::operator()}(\ \text{const intType}_0 &\ ,\ \text{const intType}_1 &\ ,\ \ldots); \\
\]

- Multi-index is mapped according to the array layout
- Layout chosen to give the best memory access pattern for the device
- Assuming first index is the parallel work index ... more on this later ...

- DO NOT assume a particular array layout (mapping)
 - Might be FORTRAN, might be C, might be something else entirely
 - Chosen at compile-time (C++ template meta-programming)
 - Advanced feature: query the array’s layout
 - Advanced feature: override the layout
Core : Views to Arrays

Accessing array data members: \(a(i_0, i_1, i_2, i_3, \ldots) \)

- Multi-index mapping performance
 - Heavily used and critical to performance
 - Considerable development effort invested in performance
 - Especially so compilers’ vectorization can “see through” this operator
 - Completely hidden, non-trivial C++ meta-programming implementation
 - Compile-time dimensions improve multi-index mapping performance

- Correctness checking: accessible and within bounds
 - Host not able to access Device memory (and vice-versa)
 - Multi-index bounds checking – in debug mode, and on the GPU
Core: Views to Arrays
Allocation and reference-counting semantics

- View objects are light-weight references to allocated arrays
- Allocate: `View< double ** [3][8] , Device > a("A",N,M);`
 - Dimension [N][M][3][8]; two runtime, two compile-time
 - “A” is a user supplied label used for error messages; need not be unique
 - Allocated array data resides in the Device’s memory space
 - Object ‘a’ is a reference to allocated array data
- Assign: `View<double**[3][8],Device> b = a ;`
 - Object ‘b’ is a reference to the same allocated data; a shallow copy
 - By default views to arrays are reference counted
- Destroy: view object goes out-of-scope or is reassigned
 - Last view (via reference counting) deallocates array data
Core: Views to Arrays

Resizing and reallocation

- **Given:** \(\text{View< ArraySpec, Device > } a(“label”, m0, m1, …); \)

- **Resize:** \(\text{resize(a, n0, n1, …);} \)
 - Allocate a new array with “label” and size \(n0 \times n1 \times … \)
 - Copy corresponding array data from original array to new array
 - Reassign the input View to the new array
 - All other views to the original array are unchanged

- **Reallocate:** \(\text{realloc(a, n0, n1, …);} \)
 - De-assign the input View; if last reference then array is deallocated
 - Assign input view to an allocated array with “label” and size \(n0 \times n1 \times … \)
 - All other views to the original array are unchanged
 - If no other view to original array this deallocates before allocating, avoids “spike” in allocated memory
Core : Views to Arrays
‘const’ Views versus ‘const’ Arrays

- **Constant View:** `const View< ArraySpec , Device > a(...);`
 - Object ‘a’ cannot be reassigned
 - Array data can be assigned via parentheses operator
 - Analogous to const pointer to non-const memory

- **Constant Array:** `View< const ArraySpec , Device > b = a ;`
 - Object ‘b’ is a reference to the same allocated data; a shallow copy
 - Array data cannot be assigned – parentheses operator returns ‘const’
 - Analogous to non-const pointer to const memory

- **Assignment (shallow copy) compatibility**
 - **OK :** `View< const ArraySpec, Device > = View< ArraySpec , Device >`
 - **ERROR :** `View< ArraySpec , Device > = View< const ArraySpec , Device >`
 - this will not compile with “no assignment operator” message
Core : Views to Arrays
Pass view objects by value – they are small and portable

- Pass view objects by value
  ```
  typedef View< ArraySpec, Device > my_array_type ;
  void my_function( my_array_type A );  // no & or *
  struct my_struct { my_array_type A ; };  // no & or *
  ```

- Small – designed as references to allocated array data
 - Pointer to data + array shape (dimensions)
 - Assignment is a fast shallow copy + reference counting (by default)

- Portable – intended to be passed by value to the device
 - View object API is portable between Host and Device code

 ➢ Do not pass by reference (or pointer) from Host to Device
 - The reference / pointer is in the Host memory space
 - Using such a Host pointer on the Device is a memory error
Core : Views to Arrays

Deep copy: Kokkos NEVER has a hidden, expensive deep-copy

- Deep copy array data *only* when explicitly instructed by user
 - `deep_copy(to_array , from_array);`

- Problem: deep copy between different array layouts
 - Same memory space – requires permutation
 - Different memory spaces – also requires allocation of a temporary
 very expensive: allocation + deep copy + permutation + deallocation

- Solution: Mirror the *layout* in the Host memory space
 - Avoid allocation, permutation, and deallocation
    ```cpp
    View< ArraySpec, Device > a(...);
    View< ArraySpec, Device >::HostMirror b = create_mirror( a );
    ```
 - ‘`b`’ has the Device’s array layout but is allocated in the Host space
Core : Views to Arrays

Deep copy: Kokkos NEVER has a hidden, expensive deep-copy

- **Device ↔ Host deep copy pattern:**

```
typedef class View<ArraySpec,Device> MyViewType ;
MyViewType a("A",...);
MyViewType::HostMirror a_host = create_mirror( a );
dee_copy( a , a_host );  deep_copy( a_host , a );
```

- **Issue:** if ‘a’ is already in the Host space then allocation of ‘a_host’ and subsequent deep_copy operations are probably unnecessary

- **Avoiding an unnecessary allocation and deep-copy**

```
MyViewType::HostMirror a_host = create_mirror_view( a );
```

- If Device uses Host memory then ‘a_host’ is simply another view of ‘a’
- Call to deep_copy becomes a no-op
Core: Views to Arrays

Recommendation: Dictionary for your View types

template< class Device >
struct MyDictionary {
 typedef View< ArraySpec_A , Device > array_A_type ;
 typedef View< ArraySpec_B , Device > array_B_type ;
 typedef View< ArraySpec_C , Device > array_C_type ;
 typedef typename array_A_type::HostMirror array_A_host_type ;
};

- Consolidate array type definitions
 - Documentation
 - Consistency
 - Allows single point of change for array spec and array layout
Outline

- Core: Fundamental Concepts
- Core: Views to Arrays
- Core: Views to Arrays – Advanced Features
- Core: Parallel Dispatch of Functors
- Core: Parallel Correctness and Performance
- Core: Device Initialization and Finalization
- Core: Performance Evaluation
- Core: Plans
Core: Views to Array – Advanced Features

Optionally specifying a particular array layout

- **View< ArraySpec, Layout, Device >** (optional parameter)
 - Override default layout; e.g., force row-major or column-major
 - Access via parentheses operator is unchanged in user code

- **Standard array layouts for arrays with rank > 1**
 - LayoutRight: right-most index is stride-one (~ C ordering)
 - LayoutLeft: left-most index is stride-one (~ FORTRAN ordering)
 - Array dimensions may be padded for cache-line alignment
 - Analogous to ‘LDA’ matrix parameter in the BLAS

- **Layout** is an extension point for tiling, blocking, etc.
 - A research-enabling capability
 - Prototype exists for tiled matrices (e.g., MAGMA / PLASMA)
Specifying behavioral attributes

- Disable reference counting
 - `View< ArraySpec , Device , Unmanaged >`
 - Cannot allocate through an unmanaged view
 - Can assign an unmanaged view from a managed view
 - Can assign an unmanaged view from user-provided pointer
 - Dangerous advanced feature unlikely to significantly impact performance

- Use GPU texture cache to speed up random access
 - `View< const ArraySpec , Device , RandomRead >`
 - If Device == ‘Cuda’ then parentheses operator uses GPU texture cache
 - Otherwise no special handling

- An extension point
Core : Views to Array – Advanced Features

Assignment of compatible views with behavioral attributes

- Compatible assignment is a shallow copy

 \[
 \text{View< ArraySpec, Device, Attribute >} = \text{View< ArraySpec, Device >}
 \]

 - Also OK: ‘const ArraySpec’ = ArraySpec
 - Also OK: Different devices using the same memory space

- Recommendation

 - Initially declare ‘view’ without behavior attributes
 - Add behavioral attributes via shallow copy to compatible view
Core : Views to Array – Advanced Features

Aggregate value types

- Examples of aggregate value types (pod ‘struct’)
 - std::complex
 - Automatic differentiation types
 - Stochastic bases coefficients types

- Memory access pattern for aggregate members
 - Is forced to be an ‘array of structures’
 - Loses coalesced memory access on GPU – degrades performance

- Active research within UQ-on-GPU LDRD
 - View integrates aggregate value types into the array layout
 - Compile-time conversion ‘array of structures’ to ‘structure of arrays’
 - Recover required memory access pattern on GPU
Aggregate value types

- **Capabilities and Constraints**
 - "scalar" type must be mappable to an array of an intrinsic type

 E.g., `std::complex<T> ↔ T[2]`

 - For a given View the mapping may have a consistent runtime dimension

 E.g., `View< myType<T> > : myType<T> ↔ T[#]`

- **Extension point requires detailed implementation knowledge**
 - Optimal performance of `View::operator()`

 - Optimal memory access pattern

 Requires merging the aggregate type’s array mapping into the containing View’s array layout

- **Path forward to performantly support complex<T>**
 - ... to be done ...
Core: Views to Array – Advanced Features

Querying properties

View::device_type // Device in View< ArraySpec, Device >
View::data_type // ArraySpec in View< ArraySpec, ... >
View::value_type // ValueType in View< ValueType###[#]##][#], ... >
View::scalar_type // For intrinsic ValueType is ValueType
 // For aggregate ValueType is the mapped intrinsic type
View::const_{ }_type // const added to previous { }_type
View::non_const_{ }_type // const removed from previous { }_type

View::array_layout // Layout type; e.g., LayoutLeft, LayoutRight
View::rank // total number of dimensions (one added for aggregate)
View::rank_dynamic // number of dynamic dimensions
View::is_managed // enumerated value if view is reference counted

View::scalar_type * View::ptr_on_device(); // Raw pointer to array data
Core : Views to Array – Advanced Features

View ↔ pointer to raw memory

- **Wrapping your** memory in a View
 - You must specify everything
 -
    ```cpp
    View< ArraySpec, Layout, Device, Unmanaged > a( pointer, N0, N1, ... );
    ```
 - Unmanaged: Kokkos cannot manage **your** memory
 - Device: **Your** memory must be on this device
 - { ArraySpec , Layout , N0 , N1 , ... }: **your** memory must have this shape

- **Interoperability with legacy codes’ arrays**
 - Option 1: Wrap your memory in a View
 - Option 2:
 - Declare Views with your specified array layout
 - Use ‘View::ptr_on_device()’ to query pointer and pass to legacy code
Outline

- Core: Fundamental Concepts
- Core: Views to Arrays
- Core: Views to Arrays – Advanced Features
- Core: Parallel Dispatch of Functors
- Core: Parallel Correctness and Performance
- Core: Device Initialization and Finalization
- Core: Performance Evaluation
- Core: Plans
Core : Parallel Dispatch of Functors

Dispatch to manycore “Device”

- ‘Threads’ Device : pthreads
 - Pool of threads created once and pinned to cores
 - Hardware detection and core pinning via hardware locality library (hwloc)
 - CPU and Intel Phi

- ‘OpenMP’ Device : wrapper on OpenMP
 - Attempt to pin to cores via hwloc
 - CPU and Intel Phi
 - Cannot use both ‘Threads’ and ‘OpenMP’ – they will compete for cores

- ‘Cuda’ Device : wrapper on NVidia’s CUDA 5.0 (or better)
 - Currently require Fermi (GPU capability 2.0 or better)
 - Eventually require Kepler (GPU capability 3.5 or better)

- Intel Phi used in native mode (no offload)
Core: Parallel Dispatch of Functors

Functor: function + calling arguments packaged in a C++ class

- Common to C++ standard algorithms, Intel TBB, NVidia Thrust
- Functor interface requirements for Kokkos

```cpp
template<class Device> // template on the device
struct MyFunctor {
    typedef Device device_type; // Required: identify the device
    KOKKOS_INLINE_FUNCTION // Required: macro mapped to device
    void operator()(... ) const { /* ... */ } // Required: function to call in parallel
    /* ... calling arguments are members of the class ... */
};
```

- Why Functor pattern?
 - Requires only C++1998 standard compliance
 - C++2011 Lambda syntax would be much prettier ...
Core : Parallel Dispatch of Functors

Functor: function + calling arguments packaged in a C++ class

- Functor object is copied to the device
 - This includes class member ‘calling arguments’
 - View members must be objects
 - Not references or pointers to Views (or anything else)
 - View objects are designed to be copied by value from Host to Device

- Device’s threads concurrently call Functor::operator()
 - Functor::operator() and all functions that it calls
 - Must be compiled for that device
 - Must be marked with KOKKOS_INLINE_FUNCTION
 - Compiling Cuda: “__device__ __host__ inline”
 - A single Functor object is shared among all threads
 - functor::operator() must be ‘const’
 - All called member functions must be ‘const’
Simple example: AXPY (\(y = a \times x + y \))

```cpp
template< class Device >
struct AXPY {
    typedef Device device_type; // run on this device
    KOKKOS_INLINE_FUNCTION
    void operator()( int iw ) const { Y(iw) += A * X(iw); }
    const double A ;
    const View<const double*,device_type> X ; // View object (not a reference)
    const View< double*,device_type> Y ;
};
parallel_for( nwork , AXPY<device>( a , x , y ) );
```

- Thread parallel call to ‘operator()’(iw) : iw \(\in [0,\text{nwork}) \)
- Access array data with ‘iw’ to avoid thread race conditions
Core: Parallel Dispatch of Functors

Asynchronous dispatch

- Parallel dispatch initiates asynchronous parallel execution
 - ‘parallel_for’ returns before the functor completes
 - Device (e.g., Cuda) can have a work queue
 functor may be placed in queue and not even started
 - Dispatch creates a temporary internal copy of the functor
 released when the functor completes

- Dispatched functors are sequenced
 - Previous functor guaranteed to complete before next functor starts
 - `deep_copy(...)` waits for previous functor to complete
 - `Device::fence(); // wait for all functors to complete`
 - Required when timing the execution of a functor
Core : Parallel Dispatch of Functors

parallel_reduce dispatch with ‘nwork’ units of work

- Simple example: DOT

```cpp
template< class Device >
struct DOT {
    typedef DeviceType device_type ;
typedef double value_type ;  // Require: reduction value type

KOKKOS_INLINE_FUNCTION
void operator() ( int iw , value_type & contrib ) const
    { contrib += y(iw) * x(iw); } // this thread’s contribution

const View<const double*,device_type> x , y ;
// ... to be continued ...
};

parallel_reduce( nwork , DOT<device>(x,y) , result ); }
```

- value_type can be a scalar, ‘struct’, or dynamic array
- Result is output to the Host
Core: Parallel Dispatch of Functors

parallel_reduce dispatch with ‘nwork’ units of work

- Initialize and join threads’ individual contributions

```cpp
struct DOT {  // ... continued ...
    KOKKOS_INLINE_FUNCTION
    void init( value_type & contrib ) const { contrib = 0 ; }
    KOKKOS_INLINE_FUNCTION
    void join( volatile value_type & contrib ,
               volatile const value_type & input ) const
               { contrib = contrib + input ; }
};
```

- Join threads’ contrib via Functor::join
- ‘volatile’ to prevent compiler from optimizing away the join

- Deterministic result ← highly desirable
 - Given the same device and # threads
 - Aligned memory prevents variations from vectorization
Core : Parallel Dispatch of Functors

parallel_reduce dispatch with on-device serial finalization

- Example: NORM2, just add a final 'sqrt' to the DOT

```cpp
struct NORM2 {  // ... similar to 'DOT' plus serial finalization
    KOKKOS_INLINE_FUNCTION
    void final(value_type & contrib) const
    { *result = sqrt(contrib); }  // final serial 'sqrt' on device
    View<double,device_type> result;  // scalar value allocated on device
};
```

- If result is needed only on the device, avoid device-host-device copy
- If final serial computation is needed
Core: Parallel Dispatch of Functors

parallel_scan dispatch with ‘nwork’ units of work

template< class Device >
struct ExclusivePrefixSum {
 typedef DeviceType device_type;
 typedef long int value_type; // Require: reduction value type
KOKKOS_INLINE_FUNCTION
 void operator()(int iw , value_type & contrib , bool final) const
 {
 contrib += x(iw);
 if (final) { y(iw) = contrib ; } // Is scan value IF final pass
 }
 const View<long int *,device_type> x , y ;
 // ... to be continued ...
};
parallel_scan(nwork , ExclusivePrefixSum<device>(x,y));
Core : Parallel Dispatch of Functors

parallel_scan dispatch with ‘nwork’ units of work

- Initialize and join threads’ individual contributions
 - Same ‘init’ and ‘join’ as the ‘parallel_reduce’

```cpp
struct ExclusivePrefixSum {  // ... continued ...
    KOKKOS_INLINE_FUNCTION
    void init( value_type & contrib ) const { contrib = 0 ; }
    KOKKOS_INLINE_FUNCTION
    void join( volatile value_type & contrib ,
               volatile const value_type & input ) const
    { contrib = contrib + input ; }
};
```

- Deterministic result ← highly desirable
 - Given the same device and # threads
 - Aligned memory prevents variations from vectorization
Core: Parallel Dispatch of Functors

Thread teams – very new capability and being refined

- Device has teams of threads
 - OpenMP 4.0 vocabulary: team of threads, league of teams
 - \# Threads = \# threads/team * \# teams
 - A team works cooperatively and shares resources; e.g., cache memory

```cpp
template< class Device >
struct MyFunctor {
  KOKKOS_INLINE_FUNCTION void operator()( Device dev , ... ) const ;
  size_t  shmem_size() const ; // Optional request for team-shared memory
};
parallel_{for,reduce,scan}( ParallelWorkRequest , MyFunctor<device>( ... ) );
```

- More complex and more control over performance
- WorkRequest *requests* league and team sizes
 - Actual sizes may be constrained by device’s capabilities
 - E.g., maximum team size limited by NUMA, \#cores, \#hyperthreads
Core: Parallel Dispatch of Functors

Why thread teams? Opportunity for Performance Improvements

- Threads within a team are tightly coupled
 - E.g., NVidia thread block = team
 - E.g., Intel hyperthreads reside within the same team
 - Teams have synchronization primitives (e.g., barrier)
 - Teams have fast transient team-shared memory

- Uncooperative teams impede performance
 - Threads within a team will thrash their shared cache
 Cause eviction of each other’s cached memory
 - Intel Phi performs better without hyperthreads IF they do not cooperate
 - Intel Phi performs best with cooperating hyperthreads
 - NVidia has dramatic performance loss with uncooperative teams
Core: Parallel Dispatch of Functors

Thread teams API: parallel_for, parallel_reduce, parallel_scan

```
template< class Device >
struct MyFunctor {
    KOKKOS_INLINE_FUNCTION void operator()( Device dev , ... ) const {
        dev.league_rank(); // Which team within the league
        dev.league_size(); // How many teams in the league
        dev.team_rank();  // Which thread within the team
        dev.team_size();  // How many threads within the team
        dev.team_barrier(); // Synchronize threads within this team
        i = dev.team_scan( n ); // Exclusive scan within this team
        view_type a( dev , N0 , N1 , ... ); // Temp array in team-shared memory
    }
};
```

- Team-shared memory used == MyFunctor::shmemp_size()
Outline

- Core: Fundamental Concepts
- Core: Views to Arrays
- Core: Views to Arrays – Advanced Features
- Core: Parallel Dispatch of Functors
- Core: Parallel Correctness and Performance
- Core: Device Initialization and Finalization
- Core: Performance Evaluation
- Core: Plans
Core: Parallel Correctness and Performance

Avoid thread race conditions

- Parallel dispatch of functor ‘f’ for ‘nwork’ units of work
 - Call f::operator()(iw) where iw ∈ [0,nwork)
 - Calls can be concurrent and in any order

- Don’t have competing updates

  ```
  operator()( int iw ) const { y( iw / 2 ) = ( x(iw) + x(iw+1) ) * 0.5 ; }
  ```

 - Bad: last thread wins → random result
 - Ugly: concurrent update → corrupted result

- Don’t read what is updated elsewhere

  ```
  operator()( int iw ) const { y(iw+1) = y(iw) + x(iw) ; }
  ```

 - Bad: last thread wins → cumulative random results
 - Ugly: concurrent update → compounding corrupted results
Core: Parallel Correctness and Performance

Parallel reductions to mitigate thread race conditions

- parallel_reduce(nwork, f, & result);

  ```
  operator()( int iw, value_type & val ) const { val += x(iw) + x(iw); }
  ```

 - Kokkos orchestrates temporaries, functor calls, and ‘join’ calls
 - Reduction is thread-safe, deterministic, and $O(\log(#\text{threads}))$

- Mapped reduction (scatter-reduce) problem:

  ```
  operator()( int iw ) const { y( imap(iw) ) += x(iw); }
  ```

 - Caveat: nondeterministic order \rightarrow round-off for non-associativity
 - Ugly: concurrent update $Y(\imap(iw))$ \rightarrow corrupted result

- Mapped reduction solutions:

 - Atomic operations prevent corrupted result

 Still have round-off. Possibly introduce performance bottleneck.

 - Rewrite algorithm as gather-reduce

 Mitigate round-off. Create large temporary array.
Core: Parallel Correctness and Performance

Atomic operations with best performance

- Not the C++11 ‘atomic<T>’ functionality and interface
- Three fundamental operations on intrinsic data types
 - 32 and 64 bit integer and floating point types,
 1. `old_val = atomic_exchange(address, new_val);`
 2. `atomic_compare_exchange_strong(address, old_val , new_val);`
 - If `*address == old_val` then exchange
 3. `old_val = atomic_fetch_add(address , value);`
 - `old_val = *address ; *address += value ;`
- Likely to have non-deterministic results ← warning!
 - Non-deterministic ordering of atomic operations
 - Floating point addition is NOT associative
- Expect atomics to be at least 2-3x slower than non-atomic
Atomic operations can introduce performance bottleneck

- `parallel_for(nwork, Dot<x,y>);`
  ```cpp
  operator()( int iw ) const { atomic_fetch_add( &val, x(iw) * y(iw) ); }
  ```
 - Every thread attempts to update the same value
 - Reduction becomes fully serialized: $O(#nwork)$ vs. $O(\log(#threads))$

- **Mapped reduction (scatter-reduce):**
  ```cpp
  operator()( int iw ) const { atomic_fetch_add( &y(imap(iw)), x(iw)); }
  ```
 - Update is partially serialized depending upon
 - “Density” of `imap(*)`
 - Capabilities of atomic units
 - Can be a performant solution given sparse and infrequent updates
Core: Parallel Correctness and Performance

Avoid long divergent branches within a thread team

- Branches impede vector-parallelism and thus performance

```c
void operator()( int iw ) const
{
    if ( condition_A(iw) ) { ... }
    else if ( condition_B(iw) ) { ... }
    else if ( condition_C(iw) ) { ... }
    else { ... }
}
```

- The entire vector unit (GPU warp) takes every branch
- Branches to complex: compiler may not be able to vectorize

- Performant if a team of threads follows the same branch
 - Different teams can follow different branches
 - Work space \(iw \in [0,nwork) \) is partitioned among teams;
 \(iw \) and \(iw+1 \) are typically in the same team
Core: Parallel Correctness and Performance

Avoid redundant access to global memory, use local temporaries

- Example: Gather finite element’s nodal coordinates

```cpp
void operator()( int ielem ) const
{
    double node_coord[N][3] ;
    for ( int j = 0 ; j < N ; ++j ) {
        const int inode = view_elem_node(ielem,j);
        for ( int k = 0 ; k < 3 ; ++k ) node_coord[j][k] = view_node_coord(j,k);
    }
    /* ... computation uses node_coord ... */
}
```

- A performance balancing act
 - Redundant access to global memory is expensive
 - Local temporaries consumes registers & L1 cache
 - threads can compete for registers & thrash each others cache
 - Vendors’ diagnostic tools for performance tuning
 - Thread-team algorithms to potentially improve performance
Core: Parallel Correctness and Performance

Strided and random access to global memory

- Parallel read/write of global View data: \(a(iw,i1,i2,...) \)
 - Leading index is the parallel work index
 - Array layout + work↔thread mapping chosen together for optimal memory access pattern
 - CPU (and Intel Phi) caching and vectorization
 - GPU (e.g., NVidia) warp coalescing

- Random read of global View data
 - E.g., gathers and tables shared among threads
 - View< const ArraySpec , Device , RandomRead >
 - Cuda uses texture-fetch capability optimized for random access
Outline

- Core: Fundamental Concepts
- Core: Views to Arrays
- Core: Views to Arrays – Advanced Features
- Core: Parallel Dispatch of Functors
- Core: Parallel Correctness and Performance
- Core: Device Initialization and Finalization
- Core: Performance Evaluation
- Core: Plans
Core : Device Initialization and Finalization

Hardware locality (hwloc) for manycore CPU and Xeon Phi

- Kokkos::hwloc Wraps OpenMPI project’s HWLOC library
 - Portable query of core topology
 - Portable pinning of threads to cores

- Capacity = #NUMA * #core/NUMA * #hyperthreads/core
 - hwloc::get_available_numa_count()
 - hwloc::get_available_cores_per_numa()
 - hwloc::get_available_threads_per_core()}
Core : Device Initialization and Finalization

Threads and OpenMP devices for manycore CPU and Xeon Phi

Device::initialize(team_count , threads_per_team ,
 use_numa_count = 0, use_cores_per_numa = 0);

- Default: use all available NUMA regions and cores
- Each team is assigned a set of cores within a NUMA region
 - Spawn and pin team’s threads to these cores
- A team’s threads are spread across its cores
 - Team has 4 cores and 4 threads then 1 thread/core
 - Team has 2 cores and 8 threads then 4 threads/core
 - Don’t define threads/core > hwloc::core_capacity()

Device::finalize()
 - Destroy spawned threads
Core: Device Initialization and Finalization

Cuda Device

- `Cuda::initialize()` OR `Cuda::initialize(Cuda::SelectDevice(#))`
 - Default is device #0
- Only one Cuda device per MPI process
 - Given two devices on a node use two MPI processes
 - Each MPI process on the node should select a different device
 - NVidia Kepler devices can be shared (have not tried this)
- Query available devices
 - `std::vector<unsigned> Cuda::detect_device_arch()`
 - Values match `__CUDA_ARCH__` specification
Outline

- Core: Fundamental Concepts
- Core: Views to Arrays
- Core: Views to Arrays – Advanced Features
- Core: Parallel Dispatch of Functors
- Core: Parallel Correctness and Performance
- Core: Device Initialization and Finalization
- Core: Performance Evaluation
- Core: Plans
Performance Evaluation

- Using Sandia Computing Research Center Testbed Clusters
 - Compton: 32nodes
 - 2x Intel Xeon E5-2670 (Sandy Bridge), hyperthreading enabled
 - 2x Intel Xeon Phi 57core (pre-production)
 - ICC 13.1.2, Intel MPI 4.1.1.036
 - Shannon: 32nodes
 - 2x Intel Xeon E5-2670, hyperthreading disabled
 - 2x NVidia K20x
 - GCC 4.4.5, Cuda 5.5, MVAPICH2 v1.9 with GPU-Direct

- Absolute performance “unit” tests
 - Evaluate parallel dispatch/synchronization efficiency
 - Evaluate impact of array access patterns and capabilities

- Mini-application : Kokkos vs. ‘native’ implementations
 - Evaluate cost of portability
Performance Test: Modified Gram-Schmidt

Simple stress test for bandwidth and reduction efficiency

- Simple sequence of vector-reductions and vector-updates
 - To orthonormalize 16 vectors
- Performance for vectors > L3 cache size
 - NVDIA K20x : 174 GB/sec = ~78% of theoretical peak
 - Intel Xeon : 78 GB/sec = ~71% of theoretical peak
 - Intel Xeon Phi : 92 GB/sec = ~46% of achievable peak

Results presented here are for pre-production Intel Xeon Phi co-processors (codenamed Knights Corner) and pre-production versions of Intel’s Xeon Phi software stack. Performance and configuration of the co-processors may be different in final production releases.
Performance Test: Molecular Dynamics
Lennard Jones force model using atom neighbor list

- Solve Newton’s equations for \(N \) particles
- Simple Lennard Jones force model:
 \[
 F_i = \sum_{j, r_{ij} < r_{cut}} 6 \epsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^7 - 2 \left(\frac{\sigma}{r_{ij}} \right)^{13} \right]
 \]
- Use atom neighbor list to avoid \(N^2 \) computations

```c
pos_i = pos(i);
for(jj = 0; jj < num_neighbors(i); jj++) {
    j = neighbors(i,jj);
    r_ij = pos_i - pos(j); //random read 3 floats
    if ( |r_ij| < r_cut )
        f_i += 6*\epsilon*( (s/r_ij)^7 - 2*(s/r_ij)^13 )
}

f(i) = f_i;
```
- Moderately compute bound computational kernel
- On average 77 neighbors with 55 inside of the cutoff radius
Performance Test: Molecular Dynamics
Lennard Jones (LJ) force model using atom neighbor list

- Test Problem (#Atoms = 864k, ~77 neighbors/atom)
 - Neighbor list array with correct vs. wrong layout
 - Different layout between CPU and GPU
 - Random read of neighbor coordinate via GPU texture fetch

- Large loss in performance with wrong layout
 - Even when using GPU texture fetch

Results presented here are for pre-production Intel Xeon Phi co-processors (codenamed Knights Corner) and pre-production versions of Intel’s Xeon Phi software stack. Performance and configuration of the co-processors may be different in final production releases.
MPI+X Performance: MiniMD

- Comparing X = OpenMPI vs. Kokkos, one MPI process / device
 - Using GPU-direct via MVAPICH2; no native Cuda version to compare
- Strong scaling test: 2,048k atoms, ~77 neighbors/atom
MPI+X Performance Test: MiniFE
Conjugate Gradient Solve of a Finite Element Matrix

- Comparing X = Kokkos, OpenMP, Cuda (GPU-direct via MVAPICH2)
- Weak scaling with one MPI process per device
 - Except on Xeon: OpenMP requires one process/socket due to NUMA
 - 8M elements/device
- Kokkos performance
 - 90% or better of “native”
 - Improvements ongoing

![Graph showing performance comparison]
Outline

- Core: Fundamental Concepts
- Core: Views to Arrays
- Core: Views to Arrays – Advanced Features
- Core: Parallel Dispatch of Functors
- Core: Parallel Correctness and Performance
- Core: Device Initialization and Finalization
- Core: Performance Evaluation
- Core: Plans
Core : Plans

Research & development

- Mantevo mini-applications (mini-drivers)
- Functor::operator()(Device) interface
 - Portable access to Cuda block & shared memory capabilities
 - Team collectives under development
 - Prototyped with ‘Cuda’ and ‘Threads’ devices
- Aggregate scalar types
 - complex, stochastic, automatic differentiation
- Generalize tiled (blocked) layouts
- Task-data-vector unified parallelism: Kokkos/Qthreads LDRD
 - Enhance Kokkos API to parallel dispatch task-graph of functors
 - Enhance Qthreads to schedule functors on teams of threads
 - Views for threaded graph data structures and algorithms
 - Make it all portable and performant (Xeon Phi and GPU)
Core : Plans

Incremental migration strategy for C++ applications and libraries

- Replace array allocations with Views (in Host space)
 - Specify layout(s) to match existing array layout(s)
 - Extract pointers to allocated array data and use them in legacy code

- Replace array access with Views
 - Replace legacy array data structure(s) with View
 - Access data members via View API

- Replace functions with Functors, run in parallel on Host
 - Hard part: finding and extracting your functions’ hidden states
 - improve code quality
 - Hard part: finding and fixing remaining thread-unsafe (race) conditions
 - most easily using atomic operations

- Set device to ‘Cuda’ and run on GPU
 - Hard part: thread scalability, some functors may require redesign
Outline

- Core: Fundamental Concepts
- Core: Views to Arrays
- Core: Views to Arrays – Advanced Features
- Core: Parallel Dispatch of Functors
- Core: Parallel Correctness and Performance
- Core: Device Initialization and Finalization
- Core: Performance Evaluation
- Core: Plans
 - Example: Unordered map global-to-local ids
 - Example: Finite element integration and nodal summation
 - Example: Particle interactions in non-uniform neighborhoods
Example Source Code
In the Trilinos git repository:

- Example: Unordered map global-to-local ids
 - ./packages/kokkos/example/global_2_local_ids/
- Example: Finite element integration and nodal summation
 - ./packages/kokkos/example/feint/
- Example: Particle interactions in non-uniform neighborhoods
 - ./packages/kokkos/example/md_skeleton/
- Configuring ‘cmake’ on testbeds to build examples:
 - ./packages/kokkos/config/configure_compton_cpu.sh
 - ./packages/kokkos/config/configure_compton_mic.sh
 - ./packages/kokkos/config/configure_shannon.sh