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Abstract

ML is a multigrid preconditioning package intended to solve linear systems of equations Ax = b

where A is a user supplied n× n sparse matrix, b is a user supplied vector of length n and x is a vector
of length n to be computed. ML should be used on large sparse linear systems arising from partial
differential equation (PDE) discretizations. While technically any linear system can be considered, ML

should be used on linear systems that correspond to things that work well with multigrid methods
(e.g. elliptic PDEs). ML can be used as a stand-alone package or to generate preconditioners for a
traditional iterative solver package (e.g. Krylov methods). We have supplied support for working with
the Aztec 2.1 and AztecOO iterative package [15]. However, other solvers can be used by supplying
a few functions.

This document describes one specific algebraic multigrid approach: smoothed aggregation. This
approach is used within several specialized multigrid methods: one for the eddy current formulation
for Maxwell’s equations, and a multilevel and domain decomposition method for symmetric and non-
symmetric systems of equations (like elliptic equations, or compressible and incompressible fluid dy-
namics problems). Other methods exist within ML but are not described in this document. Examples
are given illustrating the problem definition and exercising multigrid options.
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1 Notational Conventions

In this guide, we show typed commands in this font:

% a_really_long_command

The character % indicates any shell prompt1. Function names are shown as ML Gen Solver.
Names of packages or libraries as reported in small caps, as Epetra. Mathematical entities
are shown in italics.

2 Overview

This guide describes the use of an algebraic multigrid method within theML package. The
algebraic multigrid method can be used to solve linear system systems of type

Ax = b (1)

where A is a user supplied n× n sparse matrix, b is a user supplied vector of length n and
x is a vector of length n to be computed. ML is intended to be used on (distributed) large
sparse linear systems arising from partial differential equation (PDE) discretizations. While
technically any linear system can be considered,ML should be used on linear systems that
correspond to things that work well with multigrid methods (e.g. elliptic PDEs).
TheML package is used by creating aML object and then associating a matrix, A, and

a set of multigrid parameters which describe the specifics of the solver. Once created and
initialized, the ML object can be used to solve linear systems.

This manual is structured as follows. Multigrid and multilevel methods are briefly re-
called in Section 3. The process of configuring and building ML is outlined in Section 4.
Section 5 shows the basic usage ofML as a black-box preconditioner for Epetra matrices.
The definition of (parallel) preconditioners using ML Epetra::MultiLevelPreconditioner is
detailed. This class only requires the linear system matrix, and a list of options. Available
parameters for ML Epetra::MultiLevelPreconditioner are reported in Section 6. More ad-
vanced uses ofML are presented in Section 7. Here, we present how to define and fine-tune
smoothers, coarse grid solver, and the multilevel hierarchy. Multigrid options are reported
in Section 8. Smoothing options are reported in Section 9, where we also present how to
construct a user’s defined smoother. Advanced usage of ML with Epetra objects is re-
ported in Section 10. Section 11 reports how to define matrices in ML format without
depending on epetra. Section 12 detailes the (limited) visualization capabilities of ML.

3 Multigrid Background

A brief multigrid description is given (see [1], [6], or [7] for more information). A multigrid
solver tries to approximate the original PDE problem of interest on a hierarchy of grids and
use ‘solutions’ from coarse grids to accelerate the convergence on the finest grid. A simple
multilevel iteration is illustrated in Figure 1. In the above method, the S1

k()’s and S2
k()’s

1For simplicity, commands are shown as they would be issued in a Linux or Unix environment. Note, however, that ML

has and can be built successfully in a Windows environment.

8



/* Solve Ak u = b (k is current grid level) */
proc multilevel(Ak, b, u, k)

u = S1
k(Ak, b, u);

if ( k 6= Nlevel− 1)
Pk = determine interpolant( Ak );
r̂ = P T

k (b−Aku) ;

Âk+1 = PT
k AkPk; v = 0;

multilevel(Âk+1, r̂, v, k + 1);
u = u + Pk v;
u = S2

k(Ak, b, u);

Figure 1: High level multigrid V cycle consisting of ‘Nlevel’ grids to solve (1), with A0 = A.

are approximate solvers corresponding to k steps of pre and post smoothing, respectively.
These smoothers are discussed in Section 8. For now, it suffices to view them as basic it-
erative methods (e.g. Gauss-Seidel) which effectively smooth out the error associated with
the current approximate solution. The Pk’s (interpolation operators that transfer solutions
from coarse grids to finer grids) are the key ingredient that are determined automatically by
the algebraic multigrid method2. For the purposes of this guide, it is important to under-
stand that when the multigrid method is used, a hierarchy of grids, grid transfer operators
(Pk), and coarse grid discretizations (Ak) are created. To complete the specification of the
multigrid method, smoothers must be supplied on each level. There are several smoothers
withinML or an iterative solver package can be used, or users can write their own smoother
(see Section 8).

4 Configuring and Building ML

ML is configured and built using the GNU autoconf [4] and automake [5] tools. It can
be configured and build as a standalone package without or with Aztec 2.1 support (as
detailed in Section 4.1 and 4.2), or as a part of the Trilinos framework [8] (as described
in Section 4.3). Even though ML can be compiled and used as a standalone package, the
recommended approach is to build ML as part of the Trilinos framework, as a richer set
of features are then available.

ML has been configured and built successfully on a wide variety of operating systems,
and with a variety of compilers (as reported in Table 1).

Operating System Compilers(s)
Linux GNU and Intel
IRIX N32, IRIX 64, HPUX, Solaris, DEC Native
ASCI Red Native and Portland Group
CPlant Native
Windows Microsoft

Table 1: Main operating systems and relative compilers supported by ML.

2The Pk’s are usually determined as a preprocessing step and not computed within the iteration.
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Although it is possible to configure directly in theML home directory, we strongly advise
against this. Instead, we suggest working in an independent directory and configuring and
building there.

4.1 Building in Standalone Mode

To configure and build ML as a standalone package without any Aztec support, do the
following. It’s assumed that the shell variable $ML_HOME identifies the ML directory.

% cd $ML_HOME

% mkdir standalone

% cd standalone

% $ML_HOME/configure --disable-epetra --disable-aztecoo \

--prefix=$ML_HOME/standalone

% make

% make install

TheML library file libml.a and the header files will be installed in the directory specified
in --prefix.

4.2 Building with Aztec 2.1 Support

To enable the supports for Aztec 2.1, ML must be configured with the options reported
in the previous section, plus --with-ml aztec2 1 (defaulted to no).
All of theAztec 2.1 functionality thatML accesses is contained in the file ml_aztec_utils.c.

In principal by creating a similar file, other solver packages could work withML in the same
way. For the Aztec users there are essentially three functions that are important. The
first is AZ ML Set Amat which converts Aztec matrices into ML matrices by making ap-
propriate ML calls (see Section 11.1 and Section 11.2). It is important to note that when
creating ML matrices from Aztec matrices information is not copied. Instead, wrapper
functions are made so that ML can access the same information as Aztec. The second
is ML Gen SmootherAztec that is used for defining Aztec iterative methods as smoothers
(discussed in Section 8 and Section 13). The third function, AZ set ML preconditioner, can
be invoked to set the Aztec preconditioner to use the multilevel ‘V’ cycle constructed in
ML. Thus, it is possible to invoke several instances of Aztec within one solve: smoother
on different multigrid levels and/or outer iterative solve.

4.3 Building with Trilinos Support (RECOMMENDED)

We recommend to configure and build ML as part of the standard Trilinos build and
configure process. In fact,ML is built by default if you follow the standard Trilinos con-
figure and build directions. Please refer to the Trilinos documentation for information
about the configuration and building of other Trilinos packages.
To configure and build ML through Trilinos, you may need do the following (actual

configuration options may vary depending on the specific architecture, installation, and
user’s need). It’s assumed that shell variable $TRILINOS_HOME identifies the Trilinos di-
rectory, and, for example, that we are compiling under LINUX and MPI.
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% cd $TRILINOS_HOME

% mkdir LINUX_MPI

% cd LINUX_MPI

% $TRILINOS_HOME/configure --with-mpi-compilers \

--prefix=$TRILINOS_HOME/LINUX_MPI

% make

% make install

If required, other Trilinos and ML options can be specified in the configure line. A
complete list ofML options is given in Section 4.3.1 and 4.3.2. You can also find a complete
list and explanations by typing ./configure --help in the ML home directory.

4.3.1 Enabling Third Party Library Support

ML can be configured with the following third party libraries (TPLs): SuperLU, Su-

perLU dist, Metis, and ParMetis. It can take advantage of the following Trili-

nos packages: Ifpack, Teuchos, Triutils, Amesos. Through Amesos, ML can in-
terface with the direct solvers Klu, Umfpack , SuperLU, SuperLU dist3, Mumps. It
is assumed that you have already built the appropriate libraries (e.g., libsuperlu.a) and
have the header files. To configure ML with one of the above TPLs, you must enable the
particular TPL interface in ML. All of the options below are disabled by default.

The same configure options that one uses to enable certain other Trilinos packages also
enables the interfaces to those packages within ML:

--enable-epetra Enable support for the Epetra package.

--enable-aztecoo Enable support for the AztecOO package.

--enable-amesos Enables support for the Amesos pack-
age. Amesos is an interface with sev-
eral direct solvers. ML supports Umf-

pack [2], Klu, SuperLU dist (1.0 and 2.0),
Mumps [14]. This package is used only in func-
tion ML Gen SmootherAmesos.

--enable-teuchos Enables support for the Teuchos package.
This package is used only in the definition
of class ML Epetra::MultiLevelPreconditioner
(see Section 5). and by the Amesos smoother

--enable-triutils Enables support for the Triutils package.
ML uses Triutils only in some examples, to
create the linear system matrix.

--enable-ifpack Enable support for the Ifpack package [9].
Ifpack is used only to create smoothers via
ML Gen SmootherIfpack.

3Currently, ML can support SuperLU dist directly (without Amesos support), or through Amesos.
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--enable-anasazi Enable support for the Anasazi package.
Anasazi is a high level interface package for
various eigenvalue computations.

The following configure line options enable interfaces in ML to certain TPLs.

--with-ml metis Enables interface for Metis [12].

--with-ml parmetis2x Enables interface for ParMetis, version 2.x.

--with-ml parmetis3x Enables interface for ParMetis [11], version
3.x.

--with-ml superlu Enables ML interface for serial SuperLU [3].
The ML interface to SuperLU is deprecated
in favor of the Amesos interface.

--with-ml superlu dist Enables ML interface for SuperLU dist [3].
The ML interface to SuperLU dist is depre-
cated in favor of the Amesos interface.

For Metis, ParMETIS, and the ML interface to SuperLU and SuperLU dist, the
user must specify the location of the header files, with the option

--with-incdirs=include-locations

(Header files for Trilinos libraries are automatically located if ML is built through the
Trilinos configure.) In order to link the ML examples, the user must indicate the
location of all the enabled packages’ libraries4 , with the option

--with-ldflags=lib-locations

The user might find useful the option

--disable-examples

which turns off compilation and linking of the examples.

More details about the installation of Trilinos can be found at the Trilinos web site,

http://software.sandia.gov/Trilinos

and [10, Chapter 1].

4.3.2 Enabling Profiling

All of the options below are disabled by default.

--enable-ml timing This prints out timing of key ML routines.

--enable-ml flops This enables printing of flop counts.

Timing and flop counts are printed when the associated object is destroyed.
4An example of configuration line that enables Metis and ParMetis might be as follows:

./configure --with-mpi-compilers --enable-ml metis --enable-ml parmetis3x --with-cflags="-I$HOME/include"

--with-cppflags="-I$HOME/include" --with-ldflags="-L$HOME/lib/LINUX MPI -lparmetis-3.1 -lmetis-4.0" .

12



5 ML and Epetra: Getting Started with the MultiLevelPrecon-
ditioner Class

In this Section we show how to useML as a preconditioner toEpetra andAztecOO through
the MultiLevelPreconditioner class5 in the ML Epetra namespace.6 Although limited to al-
gebraic multilevel preconditioners, this allows the use ofML as a black-box preconditioner.
The MultiLevelPreconditioner class automatically constructs all the components of the

preconditioner, using the parameters specified in a Teuchos parameter list. The construc-
tor of this class takes as input an Epetra RowMatrix pointer and a Teuchos parameter
list7.
In order to compile, it may also be necessary to include the following files: ml_config.h

(as firstML include), Epetra_ConfigDefs.h (as firstEpetra include), Epetra_RowMatrix.h,
Epetra_MultiVector.h, Epetra_LinearProblem.h, and AztecOO.h. Check the Epetra

and AztecOO documentation for more details. Additionally, the user must include the
header file "ml_epetra_preconditioner.h". Also note that the macro HAVE_CONFIG_H

must be defined either in the user’s code or as a compiler flag.

5.1 Example 1: ml example epetra preconditioner.cpp

We now give a very simple fragment of code that uses the MultiLevelPreconditioner. For the
complete code, see $ML_HOME/examples/ml_example_epetra_preconditioner.cpp. (In
order to be effectively compiled, this example requires ML to be configured with op-
tion --enable-triutils; see Section 4.) The linear operator A is derived from an Epe-
tra RowMatrix, Solver is an AztecOO object, and Problem is an Epetra LinearProblem
object.

#include "ml_include.h"

#include "ml_epetra_preconditioner.h"

#include "Teuchos_ParameterList.hpp"

...

Teuchos::ParameterList MList;

// set default values for smoothed aggregation in MLList

ML_Epetra::SetDefaults("SA",MLList);

// overwrite with user’s defined parameters

MLList.set("max levels",6);

MLList.set("increasing or decreasing","decreasing");

MLList.set("aggregation: type", "MIS");

MLList.set("coarse: type","Amesos-KLU");

5The MultiLevelPreconditioner class is derived from the Epetra RowMatrix class.
6ML does not rely on any particular matrix format or iterative solver. Examples of using of ML as a preconditioner for

user-defined matrices (i.e., non-Epetra matrices) are reported in Section 11.1 and 11.2.
7In order to use the MultiLevelPreconditioner class, ML must be configured with options -enable-epetra

--enable-teuchos.
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// create the preconditioner

ML_Epetra::MultiLevelPreconditioner * MLPrec =

new ML_Epetra::MultiLevelPreconditioner(A, MLList, true);

// create an AztecOO solver

AztecOO Solver(Problem)

// set preconditioner and solve

Solver.SetPrecOperator(MLPrec);

Solver.SetAztecOption(AZ_solver, AZ_gmres);

Solver.Iterate(Niters, 1e-12);

...

delete MLPrec;

We now detail the general procedure to define the MultiLevelPreconditioner. First, the user
defines a Teuchos parameter list8. Table 2 briefly reports the most important methods of
this class.

set(Name,Value) Add entry Name with value and type specified by Value. Any
C++ type (like int, double, a pointer, etc.) is valid.

get(Name,DefValue) Get value (whose type is automatically specified by DefValue). If
not present, return DefValue.

subList(Name) Get a reference to sublist List. If not present, create the sublist.

Table 2: Some methods of Teuchos::ParameterList class.

Input parameters are set via method set(Name,Value), where Name is a string defining
the parameter, and Value is the specified parameter, that can be any C++ object or pointer.
A complete list of parameters available for class MultiLevelPreconditioner is reported in
Section 6.
The parameter list is passed to the constructor, together with a pointer to the matrix,

and a boolean flag. If this flag is set to false, the constructor will not create the multilevel
hierarchy until when MLPrec->ComputePreconditioner() is called. The hierarchy can be
destroyed using MLPrec->Destroy()9. For instance, the user may define a code like:

// A is still not filled with numerical values

ML_Epetra::MultiLevelPreconditioner * MLPrec =

new ML_Epetra::MultiLevelPreconditioner(A, MLList, false);

// compute the elements of A

...

// now compute the preconditioner

8See the Teuchos documentation for a detailed overview of this class.
9We suggest to create the preconditioning object with new and to free memory with delete. Some MPI calls occur in

Destroy(), so the user should not call MPI Finalize() or delete the communicator used by ML before the preconditioning
object is destroyed.

14



MLPrec->ComputePreconditioner();

// solve the linear system

...

// destroy the previously define preconditioner, and build a new one

MLPrec->Destroy();

// re-compute the elements of A

// now re-compute (if required) the preconditioner

MLPrec->ComputePreconditioner();

// re-solve the linear system

In this fragment of code, the user defines the ML preconditioner, but the preconditioner
is created only with the call ComputePreconditioner(). This may be useful, for example,
when ML is used in conjunction with nonlinear solvers (like Nox [13]).

5.2 Example 2: ml example epetra preconditioner 2level.cpp

As a second example, here we explain with some details the construction of a 2-level domain
decomposition preconditioner, with a coarse space defined using aggregation.
File $ML HOME/examples/ml example epetra preconditioner 2level.cpp reports the

entire code. In the example, the linear system matrix A, coded as an Epetra CrsMatrix,
corresponds to the discretization of a 2D Laplacian on a Cartesian grid. x and b are the
solution vector and the right-hand side, respectively.
The AztecOO linear problem is defined as

Epetra_LinearProblem problem(&A, &x, &b);

AztecOO solver(problem);

We create the Teuchos parameter list as follows:

ParameterList MLList;

ML_Epetra::SetDefaults("DD", MLList);

MLList.set("max levels",2);

MLList.set("increasing or decreasing","increasing");

MLList.set("aggregation: type", "METIS");

MLList.set("aggregation: nodes per aggregate", 16);

MLList.set("smoother: pre or post", "both");

MLList.set("coarse: type","Amesos-KLU");

MLList.set("smoother: type", "Aztec");

The last option tells ML to use the Aztec preconditioning function as a smoother. All
Aztec preconditioning options can be used as ML smoothers. Aztec requires an integer
vector options and a double vector params. Those can be defined as follows:

int options[AZ_OPTIONS_SIZE];

double params[AZ_PARAMS_SIZE];
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AZ_defaults(options,params);

options[AZ_precond] = AZ_dom_decomp;

options[AZ_subdomain_solve] = AZ_icc;

MLList.set("smoother: Aztec options", options);

MLList.set("smoother: Aztec params", params);

The last two commands set the pointer to options and params in the parameter list10.
The ML preconditioner is created as in the previous example,

ML_Epetra::MultiLevelPreconditioner * MLPrec =

new ML_Epetra::MultiLevelPreconditioner(A, MLList, true);

and we can check that no options have been mispelled, using

MLPrec->PrintUnused();

The AztecOO solver is called using, for instance,

solver.SetPrecOperator(MLPrec);

solver.SetAztecOption(AZ_solver, AZ_cg_condnum);

solver.SetAztecOption(AZ_kspace, 160);

solver.Iterate(1550, 1e-12);

Finally, some (limited) information about the preconditioning phase are obtained using

cout << MLPrec->GetOutputList();

Note that the input parameter list is copied in the construction phase, hence later changes
to MLList will not affect the preconditioner. Should the user need to modify parameters in
the MLPrec’s internally stored parameter list, he can get a reference to the internally stored
list:

ParameterList & List = MLPrec->GetList();

and then directly modify List.

6 Parameters for the ML Epetra::MultiLevelPreconditioner Class

In this section we give general guidelines for using the MultiLevelPreconditioner class effec-
tively. The complete list of input parameters is also reported.

10Only the pointer is copied in the parameter list, not the array itself. Therefore, options and params should not go out of
scope before the destruction of the preconditioner.
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6.1 Setting Options on a Specific Level

Some of the parameters that affect MultiLevelPreconditioner can in principle be different
from level to level. By default, the set method for the MultiLevelPreconditioner class affects
all levels in the multigrid hierarchy. In order to change a setting on a particular level (say, d),
the string “(level d)” is appended to the option string (note that a space must separate
the option and the level specification). For instance, assuming decreasing levels starting
from 4, one could set the aggregation schemes as follows:

MLList.set("aggregation: type","Uncoupled");

MLList.set("aggregation: type (level 1)","METIS");

MLList.set("aggregation: type (level 3)","MIS");

If the finest level is 0, and one has 5 levels, the code will use Uncoupled for level 0, METIS
for levels 1 and 2, then MIS for levels 3 and 4.
In §6.5, parameters that can be set differently on individual levels are denoted with

the symbol ? (that is not part of the parameter name). Note that some parameters (e.g.,
Uncoupled-MIS aggregation) correspond to quantities that must be the same at all levels.

6.2 General Usage of the Parameter List

AllML options can have a common prefix, specified by the user in the construction phase.
For example, suppose that we require ML: (in this case with a trailing space) to be the
prefix. The constructor will be

char Prefix[] = "ML: ";

ML_Epetra::MultiLevelPreconditioner * MLPrec =

new ML_Epetra::MultiLevelPreconditioner(*A, MLList, true, Prefix);

A generic parameter, say aggregation: type, will now be defined as

MLLIst.set("ML: aggregation: type", "METIS");

It is important to point out that some options can be effectively used only ifML has been
properly configured. In particular:

• Metis aggregation scheme requires --with-ml_metis, or otherwise the code will in-
clude all nodes in the calling processor in a unique aggregate;

• ParMetis aggregation scheme required --with-ml metis --enable-epetra and
--with-ml parmetis2x or --with-ml parmetis3x.

• Amesos coarse solvers require --enable-amesos. Moreover, Amesos must have been
configure to support the requested coarse solver. Please refer to the Amesos docu-
mentation for more details;

• Ifpack smoother requires --enable-ifpack.
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6.3 Default Parameter Settings for Common Problem Types

The MultiLevelPreconditioner class provides default values for four different preconditioner
types:

1. Linear elasticity

2. Classical 2-level domain decomposition for the advection diffusion operator

3. 3-level algebraic domain decomposition for the advection diffusion operator

4. Eddy current formulation of Maxwell’s equations

Default values are listed in Table 3. In the table, SA refers to “classical” smoothed aggre-
gation (with small aggregates and relative large number of levels), DD and DD-ML to domain
decomposition methods (whose coarse matrix is defined using aggressive coarsening and
limited number of levels). Maxwell refers to the solution of Maxwell’s equations.
Default values for the parameter list can be set by ML Epetra::SetDefaults(). The

user can easily put the desired default values in a given parameter list as follows:

Teuchos::ParameterList MLList;

ML_Epetra::SetDefaults(ProblemType, MLList);

or as

Teuchos::ParameterList MLList;

ML_Epetra::SetDefaults(ProblemType, MLList, Prefix);

Prefix (defaulted to an empty string) is the prefix to assign to each entry in the param-
eter list.
For DD and DD-ML, the default smoother is Aztec, with an incomplete factorization ILUT,

and minimal overlap. Memory for the two Aztec vectors is allocated using new, and the
user is responsible to free this memory, for instance as follows:

int * options;

options = MLList.get("smoother: Aztec options", options);

double * params;

params = MLList.get("smoother: Aztec params", params);

.

.

.

// Make sure solve is completed before deleting options & params!!

delete [] options;

delete [] params;

The rational behind this is that the parameter list stores a pointer to those vectors, not
the content itself. (As a general rule, the vectors stored in the parameter list should not be
prematurely destroyed or permitted to go out of scope.)
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Option Name Type SA DD DD-ML maxwell

max levels int 16 2 3 5
output int 8 8 8 10
increasing or decreasing string increasing increasing increasing decreasing

PDE equations int 1 1 1 –
null space dimension int 1 1 1 –
null space vectors double * NULL NULL NULL NULL

aggregation: type string Uncoupled METIS METIS Uncoupled-MIS

aggregation: type (level 1) string – – ParMETIS –
aggregation: type (level 8) string MIS – – –
aggregation: local aggregates int – 1 – –
aggregation: nodes per aggregate int – – 512 –
aggregation: damping factor double 4/3 4/3 4/3 0.0
eigen-analysis: type string Anorm Anorm Anorm Anorm

coarse: max size int 128 128 128 128
aggregation: threshold double 0.0 0.0 0.0 0.0
aggregation: next-level aggregates

per process

int – – 128 –

smoother: sweeps int 2 2 2 2
smoother: damping factor double 0.67 – – 0.67
smoother: pre or post string both both both both

smoother: type string Gauss-Seidel Aztec Aztec –
smoother: Aztec as solver bool – false false –
smoother: MLS polynomial order int – – – 3
smoother: MLS alpha double – – – 30.0

coarse: type string Amesos KLU Amesos KLU Amesos KLU SuperLU

coarse: sweeps int 1 1 1 1
coarse: damping factor double 1.0 1.0 1.0 1.0
coarse: max processes int 16 16 16 –
print unused int 0 0 0 0

Table 3: Default values for ML Epetra::MultiLevelPreconditioner for the 4 currently supported problem types SA, DD, DD-ML, Maxwell. “–”
means not set.
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Uncoupled Attempts to construct aggregates of optimal size (3d nodes in d

dimensions). Each process works independently, and aggregates
cannot span processes.

Coupled As Uncoupled, but aggregates can span processes (deprecated).
MIS Uses a maximal independent set technique to define the aggre-

gates. Aggregates can span processes. May provide better qual-
ity aggregates than either Coupled or uncoupled. Computation-
ally more expensive than either because it requires matrix-matrix
product.

Uncoupled-MIS Uses Uncoupled for all levels until there is 1 aggregate per pro-
cessor. Then switches over to MIS. The coarsening scheme on a
given level cannot be specified with this option.

METIS Use a graph partitioning algorithm to creates the aggregates,
working process-wise. The number of nodes in each aggregate is
specified with the option aggregation: nodes per aggregate.
Requires ML to be configured with --with-ml metis.

ParMETIS As METIS, but partition the global graph. Requires
--with-ml parmetis2x or --with-ml parmetis3x. Aggregates
can span arbitrary number of processes. Global number of ag-
gregates can be specified with the option aggregation: global

number.

Table 4: ML Epetra::MultiLevelPreconditioner: Available coarsening schemes.

6.4 Commonly Used Parameters

Table 4 lists parameter for changing aggregation schemes. Table 5 lists common choices for
smoothing options. Table 6 lists common choices affecting the coarse grid solve.
Note that, in the parameters name, spaces are important: Do not include non-
required leading or trailing spaces, and separate words by just one space! Mis-
pelled parameters will not be detected. One may find useful to print unused param-
eters by calling PrintUnused() after the construction of the multilevel hierarchy.

6.5 List of All Parameters for MultiLevelPreconditioner Class

6.5.1 General Options

output Output level, from 0 to 10 (10 being verbose).

print unused If non-negative, will print all the unused param-
eter on the specified processor.

max levels Maximum number of levels.

increasing or decreasing If set to increasing, level 0 will correspond
to the finest level. If set to decreasing, max
levels - 1 will correspond to the finest level.
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Jacobi Point-Jacobi. Damping factor is specified using smoother:

dampig factor, and the number of sweeps with smoother:

sweeps

Gauss-Seidel Point Gauss-Seidel. Damping factor is specified using smoother:

dampig factor, and the number of sweeps with smoother:

sweeps

Aztec Use AztecOO’s built-in preconditioning functions as smoothers.
Or, if smoother: Aztec as solver is true, use approximate
solutions with AztecOO(with smoothers: sweeps iterations
as smoothers. The AztecOOvectors options and params can
be set using smoother: Aztec options and smoother: Aztec

params.
MLS Use MLS smoother. The polynomial order is specified by

smoother: MLS polynomial order, and the alpha value by
smoother: MLS alpha.

Table 5: ML Epetra::MultiLevelPreconditioner: Commonly used smoothers.

Jacobi Use coarse: sweeps steps of Jacobi (with damping parameter
coarse: damping parameter) as a solver.

Gauss-Seidel Use coarse: sweeps steps of Gauss-Seidel(with damping pa-
rameter coarse: damping parameter) as a solver.

Amesos-KLU Use Kluthrough Amesos. Coarse grid problem is shipped to proc
0, solved, and solution is broadcast

Amesos-UMFPACK Use Umfpack through Amesos. Coarse grid problem is shipped
to proc 0, solved, and solution is broadcasted.

Amesos-Superludist Use SuperLU distthrough Amesos.
Amesos-MUMPS Use double precision version of Mumps through Amesos.
Amesos-ScaLAPACK Use double precision version of ScaLAPACK through Amesos.
SuperLU Use ML interface to SuperLU.

Table 6: ML Epetra::MultiLevelPreconditioner: Some of the available coarse matrix solvers. Note: Amesos
solvers requires ML to be configured with with-ml amesos, and Amesos to be properly configured to
support the specified solver.

PDE equations Number of PDE equations for each grid
node. This value is not considered for
Epetra VbrMatrix objects, as in this case is ob-
tained from the block map used to construct the
object. Note that only block maps with con-
stant element size can be considered.

null space dimension Dimension of the null space.

null space vectors Pointer to the null space vectors. If NULL, ML
will use the default null space.
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6.5.2 Aggregation Parameters

aggregation: type ? Define the aggregation scheme. Can
be: Uncoupled, Coupled, MIS, METIS,

ParMETIS. See Table 4.

aggregation: global aggregates ? Defines the global number of aggregates (only
for METIS and ParMETIS aggregation schemes).

aggregation: local aggregates ? Defines the number of aggregates of the calling
processor (only for METIS and ParMETIS aggre-
gation schemes). Note: this value overwrites
aggregation: global aggregates.

aggregation: nodes per aggregate ?Defines the number of nodes to be as-
signed to each aggregate (only for METIS

and ParMETIS aggregation schemes). Note:
this value overwrites aggregation: local

aggregates. If none among aggregation:

global aggregates, aggregation: local

aggregates and aggregation: nodes per

aggregate is specified, the default value is 1
aggregate per process.

aggregation: damping factor Damping factor for smoothed aggregation.

eigen-analysis: type Defines the numerical scheme to be used to com-
pute an estimation of the maximum eigenvalue
of D−1A, where D = diag(A) (for smoothed
aggregation only). It can be: cg (use 10 steps
of conjugate gradient method), Anorm (use A-
norm of matrix), Anasazi (use the Anasazi

package; the problem is supposed to be non-
symmetric), or power-method.

aggregation: threshold Threshold in aggregation.

aggregation: next-level aggregates

per process ?

Defines the maximum number of next-level ma-
trix rows per process (only for ParMETIS aggre-
gation scheme).

6.5.3 Smoothing Parameters

smoother: sweeps ? Number of sweeps of smoother.
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smoother: damping factor ? Smoother damping factor.

smoother: pre or post ? If set to pre, only pre-smoothing will be used.
If set to post, only post-smoothing will be used.
If set to both, pre- and post-smoothing will be
used.

smoother: type ? Type of the smoother. It can be: Jacobi,

Gauss-Seidel, sym Gauss-Seidel, Aztec,

IFPACK. See Table 5.

smoother: Aztec options ? Pointer to Aztec’s options vector (only for
aztec smoother) .

smoother: Aztec params ? Pointer to Aztec’s params vector (only for
aztec smoother) .

smoother: Aztec as solver ? If true, smoother: sweeps iterations of
Aztec solvers will be used as smoothers. If
false, only the Aztec’s preconditioner func-
tion will be used as smoother (only for aztec
smoother) .

smoother: MLS polynomial order ? Polynomial order for MLS smoothers.

smoother: MLS alpha ? Alpha value for MLS smoothers.

6.5.4 Coarsest Grid Parameters

coarse: max size Maximum dimension of the coarse grid. ML
will not coarsen further is the size of the current
level is less than this value.

coarse: type Coarse solver. It can be:
Jacobi, Gauss-Seidel, Amesos KLU,

Amesos UMFPACK, Amesos Superludist,

Amesos MUMPS. See Table 6.

coarse: sweeps (only for Jacobi and Gauss-Seidel) Number
of sweeps in the coarse solver.

coarse: damping factor (only for Jacobi and Gauss-Seidel) Damping
factor in the coarse solver.
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coarse: max processes Maximum number of processes to be
used in the coarse grid solution (only
for Amesos-Superludist, Amesos-MUMPS,

Amesos-ScaLAPACK).

7 Advanced Usage of ML

Sections 5 and 6 have detailed the use ofML as a black box preconditioner. In some cases,
instead, the user may need to explicitly construct the ML hierarchy. This is reported in
the following sections.

A brief sample program is given in Figure 2. The function ML Create creates a mul-

ML_Create (&ml_object, N_grids);

ML_Init_Amatrix (ml_object, 0, nlocal, nlocal,(void *) A_data);

ML_Set_Amatrix_Getrow(ml_object, 0, user_getrow, NULL, nlocal_allcolumns);

ML_Set_Amatrix_Matvec(ml_object, 0, user_matvec);

N_levels = ML_Gen_MGHierarchy_UsingAggregation(ml_object, 0,

ML_INCREASING, NULL);

ML_Gen_Smoother_Jacobi(ml_object, ML_ALL_LEVELS, ML_PRESMOOTHER, 1,

ML_DEFAULT);

ML_Gen_Solver (ml_object, ML_MGV, 0, N_levels-1);

ML_Iterate(ml_object, sol, rhs);

ML_Destroy(&ml_object);

Figure 2: High level multigrid sample code.

tilevel solver object that is used to define the preconditioner. It requires the maximum
number of multigrid levels be specified. In almost all cases, N grids= 20 is more than
adequate. The three ‘Amatrix’ statements are used to define the discretization matrix, A,
that is solved. This is discussed in greater detail in Section 11.1. The multigrid hierarchy
is generated via ML Gen MGHierarchy UsingAggregation. Controlling the behavior of this
function is discussed in Section 9. For now, it is important to understand that this function
takes the matrix A and sets up relevant multigrid operators corresponding to the smoothed
aggregation multigrid method [18] [17]. In particular, it generates a graph associated with
A, coarsens this graph, builds functions to transfer vector data between the original graph
and the coarsened graph, and then builds an approximation to A on the coarser graph.
Once this second multigrid level is completed, the same operations are repeated to the
second level approximation to A generating a third level. This process continues until the
current graph is sufficiently coarse. The function ML Gen Smoother Jacobi indicates that a
Jacobi smoother should be used on all levels. Smoothers are discussed further in Section
8. Finally, ML Gen Solver is invoked when the multigrid preconditioner is fully specified.
This function performs any needed initialization and checks for inconsistent options. After
ML Gen Solver completes ML Iterate can be used to solve the problem with an initial guess
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of sol (which will be overwritten with the solution) and a right hand side of rhs. At the
present time, the external interface to vectors are just arrays. That is, rhs and sol are
simple one-dimensional arrays of the same length as the number of rows in A. In addition
to ML Iterate, the function ML Solve MGV can be used to perform one multigrid ‘V’ cycle
as a preconditioner.

8 Multigrid & Smoothing Options

Several options can be set to tune the multigrid behavior. In this section, smoothing and
high level multigrid choices are discussed. In the next section, the more specialized topic
of the grid transfer operator is considered. The details of the functions described in these
next two sections are given in Section 13.
For most applications, smoothing choices are important to the overall performance of

the multigrid method. Unfortunately, there is no simple advice as to what smoother will
be best and systematic experimentation is often necessary. ML offers a variety of standard
smoothers. Additionally, user-defined smoothers can be supplied and it is possible to use
Aztecas a smoother. A list ofML functions that can be invoked to use built-in smoothers
are given below along with a few general comments.

ML Gen Smoother Jacobi Typically, not the fastest smoother. Should
be used with damping. For Poisson problems,
the recommended damping values are 2

3
(1D), 4

5

(2D), and 5
7
(3D). In general, smaller damping

numbers are more conservative.

ML Gen Smoother GaussSeidel Probably the most popular smoother. Typi-
cally, faster than Jacobi and damping is often
not necessary nor advantageous.

ML Gen Smoother SymGaussSeidel Symmetric version of Gauss Seidel. When us-
ing multigrid preconditioned conjugate gradi-
ent, the multigrid operator must be symmetriz-
able. This can be achieved by using a symmetric
smoother with the same number of pre and post
sweeps on each level.

ML Gen Smoother BlockGaussSeidel Block Gauss-Seidel with a fixed block size. Of-
ten used for PDE systems where the block size
is the number of degrees of freedom (DOFs) per
grid point.

ML Gen Smoother VBlockJacobi Variable block Jacobi smoother. This allows
users to specify unknowns to be grouped into
different blocks when doing block Jacobi.
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ML Gen Smoother VBlockSymGaussSeidel Symmetric variable block Gauss-Seidel smooth-
ing. This allows users to specify unknowns to be
grouped into different blocks when doing sym-
metric block Gauss-Seidel.

It should be noted that the parallel Gauss-Seidel smoothers are not true Gauss-Seidel. In
particular, each processor does a Gauss-Seidel iteration using off-processor information from
the previous iteration.

Aztec user’s [15] can invoke ML Gen SmootherAztec to use either Aztec solvers or
Aztec preconditioners as smoothers on any grid level. Thus, for example, it is possible to
use preconditioned conjugate-gradient (where the preconditioner might be an incomplete
Cholesky factorization) as a smoother within the multigrid method. Using Krylov smoothers
as a preconditioner could potentially be more robust than using the simpler schemes pro-
vided directly by ML. However, one must be careful when multigrid is a preconditioner to
an outer Krylov iteration. Embedding an inner Krylov method within a preconditioner to
an outer Krylov method may not converge due to the fact that the preconditioner can no
longer be represented by a simple matrix. Finally, it is possible to pass user-defined smooth-
ing functions into ML via ML Set Smoother. The signature of the user defined smoother
function is

int user_smoothing(ML_Smoother *smoother, int x_length, double x[],

int rhs_length, double rhs[])

where smoother is an internal ML object, x is a vector (of length x length) that corre-
sponds to the initial guess on input and is the improved solution estimate on output, and rhs
is the right hand side vector of length rhs length. The functionML Get MySmootherData(smoother)
can be used to get a pointer back to the user’s data (i.e. the data pointer given with the
ML Set Smoother invocation). A simple (and suboptimal) damped Jacobi smoother for the
finest grid of our example is given below:

int user_smoothing(ML_Smoother *smoother, int x_length, double x[], int rhs_length, double rhs[])

{

int i;

double ap[5], omega = .5; /* temp vector and damping factor */

Poisson_matvec(ML_Get_MySmootherData(smoother), x_length, x, rhs_length, ap);

for (i = 0; i < x_length; i++) x[i] = x[i] + omega*(rhs[i] - ap[i])/2.;

return 0;

}

A more complete smoothing example that operates on all multigrid levels is given in the file
mlguide.c. This routine uses the functions ML Operator Apply, ML Operator Get Diag, and
ML Get Amatrix to access coarse grid matrices constructed during the algebraic multigrid
process. By writing these user-defined smoothers, it is possible to tailor smoothers to a par-
ticular application or to use methods provided by other packages. In fact, the Aztec meth-
ods within ML have been implemented by writing wrappers to existing Aztec functions
and passing them into ML via ML Set Smoother.
At the present time there are only a few supported general parameters that may be

altered by users. However, we expect that this list will grow in the future. When us-
ing ML Iterate, the convergence tolerance (ML Set Tolerance) and the frequency with which

26



residual information is output (ML Set ResidualOutputFrequency) can both be set. Addi-
tionally, the level of diagnostic output from either ML Iterate or ML Solve MGV can be set
via ML Set OutputLevel. The maximum number of multigrid levels can be set via ML Create
or ML Set MaxLevels. Otherwise, ML continues coarsening until the coarsest grid is less
than or equal to a specified size (by default 10 degrees of freedom). This size can be set via
ML Aggregate Set MaxCoarseSize.

9 Smoothed Aggregation Options

When performing smooth aggregation, the matrix graph is first coarsened (actually vertices
are aggregated together) and then a grid transfer operator is constructed. A number of
parameters can be altered to change the behavior of these phases.

9.1 Aggregation Options

A graph of the matrix is usually constructed by associating a vertex with each equation
and adding an edge between two vertices i and j if there is a nonzero in the (i, j)th or
(j, i)th entry. It is this matrix graph whose vertices are aggregated together that effectively
determines the next coarser mesh. The above graph generation procedure can be altered in
two ways. First, a block matrix graph can be constructed instead of a point matrix graph.
In particular, all the degrees of freedom (DOFs) at a grid point can be collapsed into a
single vertex of the matrix graph. This situation arises when a PDE system is being solved
where each grid point has the same number of DOFs. The resulting block matrix graph is
significantly smaller than the point matrix graph and by aggregating the block matrix graph,
all unknowns at a grid point are kept together. This usually results in better convergence
rates (and the coarsening is actually less expensive to compute). To indicate the number
of DOFs per node, the function ML Aggregate Set NullSpace is used. The second way in
which the graph matrix can be altered is by ignoring small values. In particular, it is often
preferential to ignore weak coupling during coarsening. The error between weakly coupled
points is generally hard to smooth and so it is best not to coarsen in this direction. For
example, when applying a Gauss-Seidel smoother to a standard discretization of

uxx + εuyy = f

(with 0 ≤ ε ≤ 10−6) , there is almost no coupling in the y direction. Consequently, simple
smoothers like Gauss-Seidel do not effectively smooth the error in this direction. If we apply
a standard coarsening algorithm, convergence rates suffer due to this lack of y-direction
smoothing. There are two principal ways to fix this: use a more sophisticated smoother or
coarsen the graph only in the x direction. By ignoring the y-direction coupling in the matrix
graph, the aggregation phase effectively coarsens in only the x-direction (the direction for
which the errors are smooth) yielding significantly better multigrid convergence rates. In
general, a drop tolerance, told, can be set such that an individual matrix entry, A(i, j) is
dropped in the coarsening phase if

|A(i, j)| ≤ told ∗
√

|A(i, i)A(j, j)|.

This drop tolerance (whose default value is zero) is set by ML Aggregate Set Threshold.
There are two different groups of graph coarsening algorithms in ML:
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• schemes with fixed ratio of coarsening between levels: uncoupled aggregation, coupled
aggregation, and MIS aggregation. A description of those three schemes along with
some numerical results are given in [16]. As the default, the Uncoupled-MIS scheme
is used which does uncoupled aggregation on finer grids and switches to the more
expensive MIS aggregation on coarser grids;

• schemes with variable ratio of coarsening between levels: Metis andParMetisaggregation.
Those schemes use the graph decomposition algorithms provided byMetis andParMetis,
to create the aggregates.

Poorly done aggregation can adversely affect the multigrid convergence and the time per
iteration. In particular, if the scheme coarsens too rapidly multigrid convergence may suffer.
However, if coarsening is too slow, the number of multigrid levels increases and the number
of nonzeros per row in the coarse grid discretization matrix may grow rapidly. We refer the
reader to the above paper and indicate that users might try experimenting with the different
schemes viaML Aggregate Set CoarsenScheme Uncoupled,ML Aggregate Set CoarsenScheme Coupled,
ML Aggregate Set CoarsenScheme MIS, ML Aggregate Set CoarsenScheme METIS, and
ML Aggregate Set CoarsenScheme ParMETIS.

9.2 Interpolation Options

An interpolation operator is built using coarsening information, seed vectors, and a damping
factor. We refer the reader to [17] for details on the algorithm and the theory. In this section,
we explain a few essential features to help users direct the interpolation process.
Coarsening or aggregation information is first used to create a tentative interpolation

operator. This process takes a seed vector or seed vectors and builds a grid transfer operator.
The details of this process are not discussed in this document. It is, however, important
to understand that only a few seed vectors are needed (often but not always equal to
the number of DOFs at each grid point) and that these seed vectors should correspond
to components that are difficult to smooth. The tentative interpolation that results from
these seed vectors will interpolate the seed vectors perfectly. It does this by ensuring that
all seed vectors are in the range of the interpolation operator. This means that each seed
vector can be recovered by interpolating the appropriate coarse grid vector. The general
idea of smoothed aggregation (actually all multigrid methods) is that errors not eliminated
by the smoother must be removed by the coarse grid solution process. If the error after
several smoothing iterations was known, it would be possible to pick this error vector as the
seed vector. However, since this is not the case, we look at vectors associated with small
eigenvalues (or singular values in the nonsymmetric case) of the discretization operator.
Errors in the direction of these eigenvectors are typically difficult to smooth as they appear
much smaller in the residual (r = Ae where r is the residual, A is discretization matrix, and
e is the error). For most scalar PDEs, a single seed vector is sufficient and so we seek some
approximation to the eigenvector associated with the lowest eigenvalue. It is well known
that a scalar Poisson operator with Neumann boundary conditions is singular and that the
null space is the constant vector. Thus, when applying smoothed aggregation to Poisson
operators, it is quite natural to choose the constant vector as the seed vector. In many cases,
this constant vector is a good choice as all spatial derivatives within the operator are zero
and so it is often associated with small singular values. WithinML the default is to choose
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the number of seed vectors to be equal to the number of DOFs at each node (given via
ML Aggregate Set NullSpace). Each seed vector corresponds to a constant vector for that
DOF component. Specifically, if we have a PDE system with two DOFs per node. Then
one seed vector is one at the first DOF and zero at the other DOF throughout the graph.
The second seed vector is zero at the first DOF and one at the other DOF throughout
the graph. In some cases, however, information is known as to what components will be
difficult for the smoother or what null space is associated with an operator. In elasticity,
for example, it is well known that a floating structure has six rigid body modes (three
translational vectors and three rotation vectors) that correspond to the null space of the
operator. In this case, the logical choice is to take these six vectors as the seed vectors in
smoothed aggregation. When this type of information is known, it should be given to ML
via the command ML Aggregate Set NullSpace.
Once the tentative prolongator is created, it is smoothed via a damped Jacobi it-

eration. The reasons for this smoothing are related to the theory where the interpo-
lation basis functions must have a certain degree of smoothness (see [17]). However,
the smoothing stage can be omitted by setting the damping to zero using the function
ML Aggregate Set DampingFactor. Though theoretically poorer, unsmoothed aggregation
can have considerably less set up time and less cost per iteration than smoothed aggrega-
tion. When smoothing,ML has two ways to determine the Jacobi damping parameter and
each require some estimate of the largest eigenvalue of the discretization operator. The cur-
rent default is to use a few iterations of a conjugate-gradient method to estimate this value.
However, if the matrix is nonsymmetric, the infinity norm of the matrix should be used
instead via ML Aggregate Set SpectralNormScheme Anorm. There are several other internal
parameters that have not been discussed in this document. In the future, it is anticipated
that some of these will be made available to users.

10 Advanced Usage of ML and Epetra

Class ML Epetra::MultiLevelOperator is defined in a header file, that must be included as

#include "ml_epetra_operator.h"

Users may also need to include ml_config.h, Epetra_Operator.h, Epetra_MultiVector.h,
Epetra_LinearProblem.h, AztecOO.h. Check the Epetra and AztecOO documentation
for more details.
Let A be an Epetra RowMatrix for which we aim to construct a preconditioner, and let

ml_handle be the structureML requires to store internal data (see Section 7), created with
the instruction

ML_Create(&ml_handle,N_levels);

where N_levels is the specified (maximum) number of levels. As already pointed out,ML
can accept in input very general matrices. Basically, the user has to specify the number of
local rows, and provide a function to update the ghost nodes (that is, nodes requires in the
matrix-vector product, but assigned to another process). For Epetra matrices, this is done
by the following function

EpetraMatrix2MLMatrix(ml_handle, 0, &A);
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and it is important to note that A is not converted to ML format. Instead, EpetraMa-
trix2MLMatrix defines a suitable getrow function (and other minor data structures) that
allows ML to work with A.
Let agg_object a ML Aggregate pointer, created using

ML_Aggregate_Create(&agg_object);

At this point, users have to create the multilevel hierarchy, define the aggregation schemes,
the smoothers, the coarse solver, and create the solver. Then, we can finally create the
ML Epetra::MultiLevelOperator object

ML_Epetra::MultiLevelOperator MLop(ml_handle,comm,map,map);

(map being the Epetra Map used to create the matrix) and set the preconditioning operator
of our AztecOO solver,

Epetra_LinearProblem Problem(A,&x,&b);

AztecOO Solver(Problem);

solver.SetPrecOperator(&MLop);

where x and b are Epetra_MultiVector’s defining solution and right-hand side. The linear
problem can now be solved as, for instance,

Solver.SetAztecOption( AZ_solver, AZ_gmres );

solver.Iterate(Niters, 1e-12);

11 Using ML without Epetra

11.1 Creating a ML matrix: Single Processor

Matrices are created by defining some size information, a matrix-vector product and a
getrow function (which is used to extract matrix information). We note that Epetra and
Aztec users do not need to read this (or the next) section as there are special functions to
convert Epetra objects and Aztec matrices to ML matrices (see Section 4.2). Further,
functions for some common matrix storage formats (CSR & MSR) already exist within ML
and do not need to be rewritten11.
Size information is indicated via ML Init Amatrix. The third parameter in the Figure 2

invocation indicates that a matrix with nlocal rows is being defined. The fourth parameter
gives the vector length of vectors that can be multiplied with this matrix. Additionally, a
data pointer, A data, is associated with the matrix. This pointer is passed back into the
matrix-vector product and getrow functions that are supplied by the user. Finally, the
number ‘0’ indicates at what level within the multigrid hierarchy the matrix is to be stored.
For discussions within this document, this is always ‘0’. It should be noted that there
appears to be some redundant information. In particular, the number of rows and the
vector length in ML Init Amatrix should be the same number as the discretization matrices
are square. Cases where these ‘apparently’ redundant parameters might be set differently
are not discussed in this document.

11The functions CSR matvec, CSR getrows, MSR matvec and MSR getrows can be used.
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The function ML Set Amatrix Matvec associates a matrix-vector product with the dis-
cretization matrix. The invocation in Figure 2 indicates that the matrix-vector product
function user matvec is associated with the matrix located at level ‘0’ of the multigrid
hierarchy. The signature of user matvec is

int user_matvec(ML_Operator *Amat, int in_length, double p[], int out_length,

double ap[])

where A mat is an internalML object, p is the vector to apply to the matrix, in length is
the length of this vector, and ap is the result after multiplying the discretization matrix by
the vector p and out length is the length of ap. The functionML Get MyMatvecData(Amat)
can be used to get a pointer back to the user’s data (i.e. the data pointer given with the
ML Init Amatrix invocation).
Finally, ML Set Amatrix Getrow associates a getrow function with the discretization ma-

trix. This getrow function returns nonzero information corresponding to specific rows. The
invocation in Figure 2 indicates that a user supplied function user getrow is associated
with the matrix located at level ‘0’ of the multigrid hierarchy and that this matrix con-
tains nlocal allcolumns columns and that no communication (NULL) is used (discussed
in the next section). It again appears that some redundant information is being asked as
the number of columns was already given. However, when running in parallel this number
will include ghost node information and is usually different from the number of rows. The
signature of user getrow is

int user_getrow(ML_Operator *Amat, int N_requested_rows, int requested_rows[],

int allocated_space, int columns[], double values[], int row_lengths[])

where Amat is an internal ML object, N requested rows is the number of matrix rows for
which information is returned, requested rows are the specific rows for which informa-
tion will be returned, allocated space indicates how much space has been allocated in
columns and values for nonzero information. The function ML Get MyGetrowData(Amat)
can be used to get a pointer back to the user’s data (i.e. the data pointer given with the
ML Init Amatrix invocation). On return, the user’s function should take each row in order
within requested rows and place the column numbers and the values corresponding to
nonzeros in the arrays columns and values. The length of the ith requested row should
appear in row lengths[i]. If there is not enough allocated space in columns or values,
this routine simply returns a ‘0’, otherwise it returns a ‘1’.
To clarify, these functions, one concrete example is given corresponding to the matrix:











2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2











. (2)

To implement this matrix, the following functions are defined:

int Poisson_getrow(ML_Operator *Amat, int N_requested_rows, int requested_rows[],

int allocated_space, int columns[], double values[], int row_lengths[])

{

int count = 0, i, start, row;
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for (i = 0; i < N_requested_rows; i++) {

if (allocated_space < count+3) return(0);

start = count;

row = requested_rows[i];

if ( (row >= 0) || (row <= 4) ) {

columns[count] = row; values[count++] = 2.;

if (row != 0) { columns[count] = row-1; values[count++] = -1.; }

if (row != 4) { columns[count] = row+1; values[count++] = -1.; }

}

row_lengths[i] = count - start;

}

return(1);

}

and

int Poisson_matvec(ML_Operator *Amat, int in_length, double p[], int out_length,

double ap[])

{

int i;

for (i = 0; i < 5; i++ ) {

ap[i] = 2*p[i];

if (i != 0) ap[i] -= p[i-1];

if (i != 4) ap[i] -= p[i+1];

}

return 0;

}

Finally, these matrix functions along with size information are associated with the fine grid
discretization matrix via

ML_Init_Amatrix (ml_object, 0, 5, 5, NULL);

ML_Set_Amatrix_Getrow(ml_object, 0, Poisson_getrow, NULL, 5);

ML_Set_Amatrix_Matvec(ml_object, 0, Poisson_matvec);

Notice that in these simple examples Amat was not used. In the next section we give a
parallel example which makes use of Amat. The complete sample program can be found in
the file mlguide.c within the ML code distribution.

11.2 Creating a ML matrix: Multiple Processors

Creating matrices in parallel requires a bit more work. In this section local versus global
indexing as well as communication are discussed. In the description, we reconsider the
previous example (2) partitioned over two processors. The matrix row indices (ranging from
0 to 4) are referred to as global indices and are independent of the number of processors
being used. On distributed memory machines, the matrix is subdivided into pieces that are
assigned to individual processors. ML requires matrices be partitioned by rows (i.e. each
row is assigned to a processor which holds the entire data for that row). These matrix pieces
are stored on each processor as smaller local matrices. Thus, global indices in the original
matrix get mapped to local indices on each processor. In our example, we will assign global
rows 0 and 4 to processor 0 and store them locally as rows 1 and 0 respectively. Global
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columns 0, 1, 3, and 4 are stored locally as columns 1, 3, 2, and 0. This induces the local
matrix

(

2 −1
2 −1

)

.

Likewise, processor 1 is assigned global rows 1, 2, and 3 which are stored locally as rows 0,
1, and 2 respectively. Global columns 0 - 4 are stored locally as columns 3, 0, 1, 2, and 4
inducing the local matrix





2 −1 −1
−1 2 −1

−1 2 −1



 .

At the present time, there are some restrictions as to what type of mappings can be used. In
particular, all global rows stored on a processor must be mapped from 0 to k− 1 where k is
the number of rows assigned to this processor. This row mapping induces a partial column
mapping. Any additional columns must be mapped with consecutive increasing numbers
starting from k.

ML has no notion of global indices and uses only the local indices. In most cases,
another package or application already mapped the global indices to local indices and so
ML works with the existing local indices. Specifically, the parallel version of user getrow

and user matvec should correspond to each processor’s local matrix. This means that when
giving the column information with ML Set Amatrix Getrow, the total number of columns
in the local matrix should be given and that when row k is requested, user getrow should
return the kth local row using local column indices. Likewise, the matrix-vector product
takes a local input vector and multiplies it by the local matrix. It is important to note that
this local input vector does not contain ghost node data (i.e. the input vector is of length
nlocal where nlocal is the number of matrix rows). Thus, user matvec must perform the
necessary communication to update ghost variables. When invoking ML Init Amatrix, the
local number of rows should be given for the number of rows and the vector length12. A
specific communication function must also be passed into ML when supplying the getrow
function so that ML can determine how local matrices on different processors are ‘glued’
together. The signature of the communication function is

int user_comm(double x[], void *Adata)

where A data is the user-defined data pointer specified in the ML Init Amatrix and x is a
vector of length nlocal allcolumns specified in ML Set Amatrix Getrow. This parameter
should be set to the total number of matrix columns stored on this processor. On input,
only the first nlocal elements of x are filled with data where nlocal is the number of
rows/columns specified in ML Init Amatrix. On output, the ghost elements are updated to
their current values (defined on other processors). Thus, after this function a local matrix-
vector product could be properly performed using x. To make all this clear, we give the
new functions corresponding to our two processor example.

int Poisson_getrow(ML_Operator *Amat, int N_requested_rows, int requested_rows[],

int allocated_space, int cols[], double values[], int row_lengths[])

12In contrast to ML Set Amatrix Getrow in which the number of local columns are given (including those that correspond to
ghost variables), ML Init Amatrix does not include ghost variables and so both size parameters should be the number of local
rows.
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{

int m = 0, i, row, proc, *itemp, start;

itemp = (int *) ML_Get_MyGetrowData(Amat);

proc = *itemp;

for (i = 0; i < N_requested_rows; i++) {

row = requested_rows[i];

if (allocated_space < m+3) return(0);

values[m] = 2; values[m+1] = -1; values[m+2] = -1;

start = m;

if (proc == 0) {

if (row == 0) {cols[m++] = 0; cols[m++] = 2; }

if (row == 1) {cols[m++] = 1; cols[m++] = 3;}

}

if (proc == 1) {

if (row == 0) {cols[m++] = 0; cols[m++] = 1; cols[m++] = 4;}

if (row == 1) {cols[m++] = 1; cols[m++] = 0; cols[m++] = 2;}

if (row == 2) {cols[m++] = 2; cols[m++] = 1; cols[m++] = 3;}

}

row_lengths[i] = m - start;

}

return(1);

}

int Poisson_matvec(ML_Operator *Amat, int in_length, double p[], int out_length,

double ap[])

{

int i, proc, *itemp;

double new_p[5];

itemp = (int *) ML_Get_MyMatvecData(Amat);

proc = *itemp;

for (i = 0; i < in_length; i++) new_p[i] = p[i];

Poisson_comm(new_p, A_data);

for (i = 0; i < out_length; i++) ap[i] = 2.*new_p[i];

if (proc == 0) {

ap[0] -= new_p[2];

ap[1] -= new_p[3];

}

if (proc == 1) {

ap[0] -= new_p[1]; ap[0] -= new_p[4];

ap[1] -= new_p[2]; ap[1] -= new_p[0];

ap[2] -= new_p[3]; ap[2] -= new_p[1];

}

return 0;

}

and

int Poisson_comm(double x[], void *A_data)

{

int proc, neighbor, length, *itemp;

double send_buffer[2], recv_buffer[2];
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itemp = (int *) A_data;

proc = *itemp;

length = 2;

if (proc == 0) {

neighbor = 1;

send_buffer[0] = x[0]; send_buffer[1] = x[1];

send_msg(send_buffer, length, neighbor);

recv_msg(recv_buffer, length, neighbor);

x[2] = recv_buffer[1]; x[3] = recv_buffer[0];

}

else {

neighbor = 0;

send_buffer[0] = x[0]; send_buffer[1] = x[2];

send_msg(send_buffer, length, neighbor);

recv_msg(recv_buffer, length, neighbor);

x[3] = recv_buffer[1]; x[4] = recv_buffer[0];

}

return 0;

}

Finally, these matrix functions along with size information are associated with the fine grid
discretization matrix via

if (proc == 0) {nlocal = 2; nlocal_allcolumns = 4;}

else if (proc == 1) {nlocal = 3; nlocal_allcolumns = 5;}

else {nlocal = 0; nlocal_allcolumns = 0;}

ML_Init_Amatrix (ml_object, 0, nlocal, nlocal, &proc);

ML_Set_Amatrix_Getrow(ml_object, 0, Poisson_getrow, Poisson_comm,

nlocal_allcolumns);

ML_Set_Amatrix_Matvec(ml_object, 0, Poisson_matvec);

12 Visualization Capabilities

ML supports limited capabilities for the visualization of and statistical information for
aggregates, with an interface to OpenDX. Currently, only Uncoupled, METIS and ParMETIS
aggregation routines can dump files in OpenDX format.
The procedure to create the OpenDX input files is as follows:

1. Add the following line after the creation of the ML Aggregate object

ML_Aggregate_VizAndStats_Setup( ag, MaxMgLevels );

where MaxMgLevels is the maximum number of levels (this is the same value used to
create the ML object).

2. Create the multilevel hierarchy;

3. Write OpenDX file using the instruction

ML_Aggregate_VizAndStats_Compute( ml, ag, MaxMgLevels, x, y, z,

option, filename);
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where ml is the ML object, ag the ML Aggregation object, and x,y,z are double
vectors, whose size equals the number of local nodes in the fine grid, containing the
coordinates of fine grids nodes. option is an integer value defined so that:

• option = 1 : solution of 1D problem (y and z can be NULL);

• option = 2 : solution of 2D problems (z can be NULL);

• option = 3 : solution of 3D problems.

Processor X will write its own file, filename_levelY_procX, where Y is the level.
filename can be set to NULL (default value of .graph will be used in this case).

Note that in AMG there is no mesh associated with coarser levels. Therefore
ML Aggregate VizAndStats Compute needs to assign a set of coordinates to each aggre-
gate. This is done by computing the center of gravity of each aggregate (starting from
the fine grid and finishing at the coarsest level).

ML_Aggregate_VizAndStats_Compute will also write statistical information to the
screen.

4. Deallocate memory using

ML_Aggregate_VizAndStats_Clean( ag, MaxMgLevels ).

At this point, one should copy file viz_aggre.net and viz_aggre.cfg (located in
$ML_HOME/util/) in the directory where the output files are located, and run OpendDX
with the instruction

% dx -edit viz_aggre.net

Other instructions are reported in file $ML_HOME/util/viz_aggre.README. An example of
code can be found in file $ML_HOME/examples/ml_aztec_simple_METIS.c.
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13 ML Functions

Prototype

int AZ ML Set Amat(ML *ml object, int k, int isize, int osize, AZ MATRIX *Amat,
int *proc config)

Description

Create anML matrix view of an existing Aztecmatrix and store it within the ‘ml object’
context.

Parameters

ml object On input, ML object pointer (see ML Create). On output, the
discretization matrix of level k is the same as given by Amat.

k On input, indicates level within ml object hierarchy (should be be-
tween 0 and Nlevels†-1).

isize On input, the number of local rows in the submatrix stored on this
processor.

osize On input, the number of columns in the local submatrix stored on
this processor not including any columns associated with ghost un-
knowns.

Amat On input, an Aztecdata structure representing a matrix. See the
AztecUser’s Guide.

proc config On input, an Aztecdata structure representing processor informa-
tion. See the AztecUser’s Guide.

Prototype

void AZ set ML preconditioner(AZ PRECOND **Precond, AZ MATRIX *Amat,
ML *ml object, int options[])
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Description

Associate the multigrid V cycle method defined in ml object with an
Aztecpreconditioner. Thus, when Precond and options are passed into the
Azteciterative solver, it will invoke the V cycle multigrid algorithm described by
ml object.

Parameters

Precond On input, an Aztecdata structure representing a preconditioner.
On output, the multigrid V cycle method described by ml object
will be associated with this preconditioner. See the AztecUser’s
Guide.

Amat On input, an Aztecdata structure representing a matrix. See the
AztecUser’s Guide.

ml object On input,ML object pointer (see ML Create) representing a V cycle
multigrid method.

options On input, an Aztecdata structure representing user chosen options.
On output, set appropriately for multigrid V cycle preconditioner.

Prototype

int ML Aggregate Create(ML Aggregate **agg object)

Description

Create an aggregate context (or handle). This instance will be used in all subsequent
function invocations that set aggregation options.

Parameters

agg object On input, a pointer to a noninitialized ML Aggregate object pointer.
On output, points to an initialized ML Aggregate object pointer.
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Prototype

int ML Aggregate Destroy(ML Aggregate **agg object)

Description

Destroy the aggregate context, agg object, and delete all memory allocated by ML in
building and setting the aggregation options.

Parameters

agg object On input, aggregate object pointer (see ML Aggregate Create). On
output, all memory allocated by ML and associated with this con-
text is freed.

Prototype

int ML Aggregate Set CoarsenScheme Coupled(ML Aggregate *agg object)

Description

Set the aggregate coarsening scheme to be used as ‘coupled’ (see Section 9).

Parameters

agg object On input, aggregate object pointer (see ML Aggregate Create). On
output, the ‘coupled’ aggregation will be used for automatic coars-
ening.

Prototype

int ML Aggregate Set CoarsenScheme MIS(ML Aggregate *agg object)
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Description

Set the aggregate coarsening scheme to be used as ‘MIS’ (see Section 9).

Parameters

agg object On input, aggregate object pointer (see ML Aggregate Create). On
output, the ‘MIS’ aggregation will be used for automatic coarsening.

Prototype

int ML Aggregate Set CoarsenScheme Uncoupled(ML Aggregate *agg object)

Description

Set the aggregate coarsening scheme to be used as ‘uncoupled’ (see Section 9).

Parameters

agg object On input, aggregate object pointer (see ML Aggregate Create). On
output, the ‘uncoupled’ aggregation will be used for automatic coars-
ening.

Prototype

int ML Aggregate Set CoarsenScheme METIS(ML Aggregate *agg object)

Description

Set the aggregate coarsening scheme to be used as ‘METIS (see Section 9).

40



Parameters

agg object On input, aggregate object pointer (see ML Aggregate Create). On
output, the ‘METIS’ aggregation will be used for automatic coars-
ening.

Prototype

int ML Aggregate Set CoarsenScheme ParMETIS(ML Aggregate *agg object)

Description

Set the aggregate coarsening scheme to be used as ‘ParMETIS (see Section 9).

Parameters

agg object On input, aggregate object pointer (see ML Aggregate Create). On
output, the ‘ParMETIS’ aggregation will be used for automatic
coarsening.

Prototype

int ML Aggregate Set DampingFactor( ML Aggregate *ag, double factor)

Description

Set the damping factor used within smoothed aggregation. In particular, the interpolation
operator will be generated by

P = (I −
ω

ρ̃
A)Pt

where A is the discretation matrix, ω is the damping factor (default is 4
3
), ρ is an estimate

of the spectral radius of A, and Pt are the seed vectors (tentative prolongator).
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Parameters

agg object On input, aggregate object pointer (see ML Aggregate Create). On
output, the damping factor is set to factor.

factor On input, damping factor that will be associated with this aggrega-
tion object.

Prototype

int ML Aggregate Set MaxCoarseSize( ML Aggregate *agg object, int size )

Description

Set the maximum coarsest mesh to ‘size’. No further coarsening is performed if the total
number of matrix equations is less than this ‘size’ (see Section 8).

Parameters

agg object On input, aggregate object pointer (see ML Aggregate Create). On
output, the coarsest mesh size will be set.

size On input, size indicating the maximum coarsest mesh size.

Prototype

int ML Aggregate Set NullSpace(ML Aggregate *agg object, int num PDE eqns, int
null dim,

double *null vect, int leng)

Description

Set the seed vectors (rigid body mode vectors) to be used in smoothed aggregation. Also
indicate the number of degrees of freedom (DOF) per node so that the aggregation
algorithm can group them together.
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Parameters

agg object On input, an ML Aggregate object pointer created by invoking
ML Aggregate Create. On output, the seed vectors and DOFs per
node are set to null vect and num PDE eqns respectively.

num PDE eqns On input, indicates number of equations that should be grouped
in blocks when performing the aggregation. This guarantees that
different DOFs at a grid point remain within the same aggregate.

null dim On input, number of seed vectors that will be used when creating
the smoothed aggregation grid transfer operator.

null vect On input, the seed vectors are given in sequence. Each processor
gives only the local components residing on the processor. If null,
default seed vectors are used.

leng On input, the length of each seed vector.

Prototype

int ML Aggregate Set SpectralNormScheme Calc( ML Aggregate *ag )

Description

Set the method to be used for estimating the spectral radius of A (the discretization
matrix) to be conjugate gradient. This spectral radius estimate is used when smoothing
the initial prolongation operator (see ML Aggregate Set DampingFactor).

Parameters

agg object On input, aggregate object pointer (see ML Aggregate Create). On
output, the spectral radius estimate will be determined by a conju-
gate gradient routine.

Prototype

int ML Aggregate Set SpectralNormScheme Anorm( ML Aggregate *ag)
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Description

Set the method to be used for estimating the spectral radius of A (the discretization
matrix) to be the infinity norm. This spectral radius estimate is used when smoothing the
initial prolongation operator (see ML Aggregate Set DampingFactor).

Parameters

agg object On input, aggregate object pointer (see ML Aggregate Create). On
output, the spectral radius estimate will be taken as the infinity
norm of the matrix.

Prototype

int ML Aggregate Set Threshold(ML Aggregate *agg object, double tolerance)

Description

Set the drop tolerance used when creating the matrix graph for aggregation. Entries in the
matrix A are dropped when |A(i, j)| ≤ tol d ∗

√

|A(i, i)A(j, j)|. See Section 9 for more
details.

Parameters

agg object On input, an ML Aggregate object pointer created by invoking
ML Aggregate Create. On output, drop tolerance for creating the
matrix graph is set.

tolerance On input, value to be used for dropping matrix entries.

Prototype

int ML Create(ML **ml object, int Nlevels)
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Description

Create anML solver context (or handle). ThisML instance will be used in all subsequent
ML function invocations. The ML object has a notation of levels where different
multigrid operators corresponding to different grid levels are stored.

Parameters

ml object On input, a pointer to a noninitialized ML object pointer. On out-
put, points to an initialized ML object pointer.

Nlevels Maximum number of multigrid levels within this ML object.

Prototype

int ML Destroy(ML **ml object)

Description

Destroy the ML solver context, ml object, and delete all memory allocated by ML in
building and setting options.

Parameters

ml object On input,ML object pointer (see ML Create). On output, all mem-
ory allocated by ML and associated with this context is freed.

Prototype

int ML Gen Blocks Aggregates(ML Aggregate *agg object, int k, int *nblocks, int
**block list)
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Description

Use aggregates to partition submatrix residing on local processor into blocks. These
blocks can then be used within smoothers (see for example
ML Gen Smoother VBlockJacobi or ML Gen Smoother VBlockSymGaussSeidel).

Parameters

ml object On input, ML object pointer (see ML Create).

k On input, indicates level within ml object hierarchy where the ag-
gregate information is found that defines partitioning.

nblocks On output, indicates the number of partitions.

block list On output, equation i resides in the block list[i]th partition.

Prototype

int ML Gen Blocks Metis(ML *ml object, int k, int *nblocks, int **block list)

Description

Use Metis to partition submatrix residing on local processor into blocks. These blocks can
then be used within smoothers (see for example ML Gen Smoother VBlockJacobi or
ML Gen Smoother VBlockSymGaussSeidel).

Parameters

ml object On input, ML object pointer (see ML Create).

k On input, indicates level within ml object hierarchy where the dis-
cretization matrix is found that will be partitioned.

nblocks On input, indicates number of partitions desired on each processor.
On output, indicates the number of partitions obtained.

block list On output, equation i resides in the block list[i]th partition.
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Prototype

int ML Gen CoarseSolverSuperLU(ML *ml object, int k)

Description

Use SuperLU for the multigrid coarse grid solver on level k within ml object and perform
any initialization that is necessary.

Parameters

ml object On input, ML object pointer (see ML Create). On output, the
coarse grid solver of level k is set to use SuperLU.

k On input, indicates level within ml object hierarchy (must be the
coarsest level in the multigrid hierarchy).

Prototype

int ML Gen MGHierarchy UsingAggregation(ML *ml object, int start, int inc or dec,
ML Aggregate *agg object)

Description

Generate a multigrid hierarchy via the method of smoothed aggregation. This hierarchy
includes a series of grid transfer operators as well as coarse grid approximations to the fine
grid discretization operator. On completion, return the total number of multigrid levels in
the newly created hiearchy.

Parameters

ml object On input, ML object pointer (see ML Create). On output, coarse
levels are filled with grid transfer operators and coarse grid dis-
cretizations corresponding to a multigrid hierarchy.
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start On input, indicates multigrid level within ml object where the fine
grid discretization is stored.

inc or dec On input, ML INCREMENT or ML DECREMENT. Normally, set
to ML INCREMENT meaning that the newly created multigrid
operators should be stored in the multigrid levels: start, start+1,
start+2, start+3, etc. If Set to ML DECREMENT, multigrid oper-
ators are stored in start, start-1, start-2, etc.

agg object On input, an initialized aggregation object defining options to the
generation of grid transfer operators. If set to NULL, default values
are used for all aggregation options. See ML Aggregate Create.

Prototype

int ML Gen SmootherAmesos(ML *ml object, int k, int AmesosSolver,
int MaxProcs)

Description

Use Amesos interface to direct solvers for the multigrid coarse grid solver on level k within
ml object and perform any initialization that is necessary.

Parameters

ml object On input, ML object pointer (see ML Create). On output, the
coarse grid solver of level k is set to use Amesos.

k On input, indicates level within ml object hierarchy (must be the
coarsest level in the multigrid hierarchy).

AmesosSolver On input, indicates the direct solver library to use in the coarse so-
lution. It can be: ML AMESOS UMFPACK, ML AMESOS KLU,
ML AMESOS SUPERLUDIST, ML AMESOS MUMPS,
ML AMESOS SCALAPACK.

MaxProcs On input, indicates maximum number of processors to use in the
coarse solution (only for ML AMESOS SUPERLUDIST).
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Prototype

void ML Gen SmootherAztec(ML *ml object, int k, int options[], double params[],
int proc config[], double status[], int N iterations,
int pre or post, void (*prec fun)(double *, int *, int *,
double *, AZ MATRIX *, AZ PRECOND *))

Description

Set the smoother (either pre or post as indicated by pre or post) at level k within the
multigrid solver context to invoke Aztec. The specific Aztecscheme is given by the
Aztecarrays: options, params, proc config, and status and Aztecpreconditioning
function: prec function.

Parameters

ml object On input, ML object pointer (see ML Create). On output, a
smoother function is associated within ml object at level k.

k On input, indicates where the smoother function pointer will be
stored within the multigrid hierarchy.

options, params

proc config, status

On input, Aztecarrays that determine the Aztecscheme and are
used for Aztecto return information. See the AztecUser’s Guide.

N iterations On input, maximum Azteciterations within a single smoother in-
vocation. When set to AZ ONLY PRECONDITIONER, only one iteration
of the preconditioner is used without an outer Krylov method.

pre or post On input, ML PRESMOOTHER or ML POSTSMOOTHER indi-
cating whether the smoother should be performed before or after
the coarse grid correction.

prec fun On input, Aztecpreconditioning function indicating what precon-
ditioner will be used within Aztec. Normally, this is set to
AZ precondition. See the AztecUser’s Guide.

Prototype
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int ML Gen Smoother BlockGaussSeidel(ML *ml object, int k, int pre or post, int ntimes,
double omega, int blocksize)

Description

Set the multigrid smoother for level k of ml object and perform any initialization that is
necessary. When using block Gauss Seidel, the total number of equations must be a
multiple of blocksize. Each consecutive group of blocksize unknowns is grouped into a
block and a block Gauss Seidel algorithm is applied.

Parameters

ml object On input, ML object pointer (see ML Create). On output, the pre
or post smoother of level k is set to block Gauss Seidel.

k On input, indicates level within ml object hierarchy (should be be-
tween 0 and Nlevels†-1). ML ALL LEVELS sets the smoothing on
all levels in ml object.

pre or post On input, ML PRESMOOTHER or ML POSTSMOOTHER indi-
cating whether the pre or post smoother is to be set.

ntimes On input, sets the number of block Gauss Seidel iterations that will
be performed.

omega On input, sets the damping parameter to be used during this block
Gauss Seidel smoothing.

blocksize On input, sets the size of the blocks to be used during block Gauss
Seidel smoothing.

Prototype

int ML Gen Smoother GaussSeidel(ML *ml object, int k, int pre or post, int ntimes,
double omega)
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Description

Set the multigrid smoother for level k of ml object and perform any initialization that is
necessary.

Parameters

ml object On input, ML object pointer (see ML Create). On output, the pre
or post smoother of level k is set to Gauss Seidel.

k On input, indicates level within ml object hierarchy (should be be-
tween 0 and Nlevels†-1). ML ALL LEVELS sets the smoothing on
all levels in ml object.

pre or post On input, ML PRESMOOTHER or ML POSTSMOOTHER indi-
cating whether the pre or post smoother is to be set.

ntimes On input, sets the number of Gauss Seidel iterations that will be
performed.

omega On input, sets the damping parameter to be used during this Gauss
Seidel smoothing.

Prototype

int ML Gen Smoother Jacobi(ML *ml object, int k, int pre or post, int ntimes,
double omega)

Description

Set the multigrid smoother for level k of ml object and perform any initialization that is
necessary.

Parameters

ml object On input, ML object pointer (see ML Create). On output, the pre
or post smoother of level k is set to Jacobi.

k On input, indicates level within ml object hierarchy (should be be-
tween 0 and Nlevels†-1). ML ALL LEVELS sets the smoothing on
all levels in ml object.

51



pre or post On input, ML PRESMOOTHER or ML POSTSMOOTHER indi-
cating whether the pre or post smoother is to be set.

ntimes On input, sets the number of Jacobi iterations that will be per-
formed.

omega On input, sets the damping parameter to be used during this Jacobi
smoothing. ML DEFAULT sets it to .5

Prototype

int ML Gen Smoother SymGaussSeidel(ML *ml object, int k, int pre or post, int ntimes,
double omega)

Description

Set the multigrid smoother for level k of ml object and perform any initialization that is
necessary.

Parameters

ml object On input, ML object pointer (see ML Create). On output, the pre
or post smoother of level k is set to symmetric Gauss Seidel.

k On input, indicates level within ml object hierarchy (should be be-
tween 0 and Nlevels†-1). ML ALL LEVELS sets the smoothing on
all levels in ml object.

pre or post On input, ML PRESMOOTHER or ML POSTSMOOTHER indi-
cating whether the pre or post smoother is to be set.

ntimes On input, sets the number of symmetric Gauss Seidel iterations that
will be performed.

omega On input, sets the damping parameter to be used during this sym-
metric Gauss Seidel smoothing.

Prototype
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int ML Gen Smoother VBlockJacobi(ML *ml object, int k, int pre or post, int ntimes,
double omega, int nBlocks, int *blockIndices)

Description

Set the multigrid smoother for level k of ml object and perform any initialization that is
necessary. A block Jacobi smoothing algorithm will be used where the size of the blocks
can vary and is given by nBlocks and blockIndices (see ML Gen Blocks Aggregates and
ML Gen Blocks Metis).

Parameters

ml object On input, ML object pointer (see ML Create). On output, the pre
or post smoother of level k is set to variable block Jacobi.

k On input, indicates level within ml object hierarchy (should be be-
tween 0 and Nlevels†-1). ML ALL LEVELS sets the smoothing on
all levels in ml object.

pre or post On input, ML PRESMOOTHER or ML POSTSMOOTHER indi-
cating whether the pre or post smoother is to be set.

ntimes On input, sets the number of block Jacobi iterations that will be
performed.

omega On input, sets the damping parameter to be used during this block
Jacobi smoothing.

nBlocks On input, indicates the total number of block equations in matrix.

blockIndices On input, blockIndices[i] indicates block to which ith element be-
longs.

Prototype

int ML Gen Smoother VBlockSymGaussSeidel(ML *ml object, int k, int pre or post,
int ntimes, double omega, int nBlocks,
int *blockIndices)
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Description

Set the multigrid smoother for level k of ml object and perform any initialization that is
necessary. A block Gauss Seidel smoothing algorithm will be used where the size of the
blocks can vary and is given by nBlocks and blockIndices (see ML Gen Blocks Aggregates
and ML Gen Blocks Metis).

Parameters

ml object On input, ML object pointer (see ML Create). On output, the pre
or post smoother of level k is set to variable block symmetric Gauss
Seidel.

k On input, indicates level within ml object hierarchy (should be be-
tween 0 and Nlevels†-1). ML ALL LEVELS sets the smoothing on
all levels in ml object.

pre or post On input, ML PRESMOOTHER or ML POSTSMOOTHER indi-
cating whether the pre or post smoother is to be set.

ntimes On input, sets the number of block symmetric Gauss Seidel iterations
that will be performed.

omega On input, sets the damping parameter to be used during this block
symmetric Gauss Seidel smoothing.

nBlocks On input, indicates the total number of block equations in matrix.

blockIndices On input, blockIndices[i] indicates block to which ith element be-
longs.

Prototype

int ML Gen Solver(ML *ml object, int scheme, int finest level, int coarsest level)

Description

Initialize the ML solver context, ml object, so that it is ready to be used in a solve.
ML Gen Solver should be called after the multigrid cycle is fully specified but before
ML Iterate or ML Solve MGV is invoked.
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Parameters

ml object On input, ML object pointer (see ML Create). On output, all nec-
essary initialization is completed.

scheme On input, must be set to ML MGV indicating a multigrid V cycle
is used.

finest level On input, indicates the location within ml object where the finest
level is stored. Normally, this is ‘0’.

coarsest level On input, indicates location within ml object where the coarsest
grid is stored. When doing smoothed aggregation, this can be de-
termined using the total number of multigrid levels returned by
ML Gen MGHierarchy UsingAggregation.

Prototype

int ML Get Amatrix(ML *ml object, int k, ML Operator **matrix)

Description

Set *matrix to point to the discretization matrix associated at level k within the multigrid
solver context ml object. This pointer can then be passed into functions like:
ML Operator Apply, ML Operator Get Diag, and ML Operator Getrow.

Parameters

ml object On input, ML object pointer (see ML Create).

k On input, indicates which level within the multigrid hierarchy should
be accessed.

matrix On output, *matrix points to the discretization matrix at level k
within the multigrid hierarchy. This pointer can then be passed
into the functions ML Operator Apply, ML Operator Get Diag, and
ML Operator Getrow.

Prototype
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void * ML Get MyGetrowData(ML Operator *Amat)

Description

Returns the user specific data pointer associated with the ML Operator given by Amat.
This function is normally employed when users write their own matrix getrow function
and they need to get back the pointer that was given with ML Init Amatrix.

Parameters

Amat On input, points to matrix for which we seek the internal data
pointer.

Prototype

void * ML Get MyMatvecData(ML Operator *Amat)

Description

Returns the user specific data pointer associated with the ML Operator given by Amat.
This function is normally employed when users write their own matrix-vector product
function and they need to get back the pointer that was given with ML Init Amatrix.

Parameters

Amat On input, points to matrix for which we seek the internal data
pointer.

Prototype

void * ML Get MySmootherData(ML Smoother *Smoother)
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Description

Returns the user specific data pointer associated with the ML Smoother object given by
Smoother. This function is normally employed when users write their own smoother
function and they need to get back the pointer that was given with ML Set Smoother.

Parameters

Smoother On input, points to the smoother for which we seek the internal data
pointer.

Prototype

int ML Init Amatrix(ML *ml object, int k, int ilen, int olen, void *data)

Description

Set the size information for the discretization matrix associated at level k within
ml object. Additionally, associate a data pointer that can be used when writing
matrix-vector product and matrix getrow functions.

Parameters

ml object On input, ML object pointer (see ML Create). On output, size
information is associated with the discretization matrix at level k.

k On input, indicates where discretization size information will be
stored within the multigrid hierarchy.

ilen On input, the number of local rows in the submatrix stored on this
processor.

olen On input, the number of columns in the local submatrix stored on
this processor not including any columns associated with ghost un-
knowns.

data On input, a data pointer that will be associated with the discretiza-
tion matrix and could be used for matrix-vector product and matrix
getrow functions.
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Prototype

int ML Iterate(ML *ml object, double *sol, double *rhs)

Description

Iterate until convergence to solve the linear system using the multigrid V cycle defined
within ml object.

Parameters

ml object On input, ML object pointer (see ML Create).

sol On input, a vector containing the initial guess for the linear sys-
tem contained in ml object. On output, the solution obtained by
performing repeated multigrid V cycles.

rhs On input, a vector contain the right hand side for the linear system
contained in ml object.

Prototype

int ML Operator Apply(ML Operator *A, int in length, double p[], int out length,
double ap[])

Description

Invoke a matrix-vector product using the ML Operator A. That is perform ap = A ∗ p.
Any communication or ghost variables work needed for this operation is also performed.

Parameters

A On input, an ML Operator (see ML Get Amatrix).

in length On input, length of vector p (not including ghost variable space).
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p On input, vector which will be multiplied by A.

out length On input, length of vector ap.

ap On output, vector containing result of A ∗ p.

Prototype

int ML Operator Get Diag(ML Operator *A, int length, double **diag)

Description

Get the diagonal of the ML Operator A (which is assumed to be square).

Parameters

A On input, an ML Operator (see ML Get Amatrix).

length On input, number of diagonal elements wanted.

diag On output, sets a pointer to an array containing the diagonal ele-
ments. NOTE: this is not a copy but in fact a pointer into an ML
data structure. Thus, this array should not be freed.

Prototype

int ML Operator Getrow(ML Operator *A, int N requested rows, int requested rows[],
int allocated space, int columns[], double values[],
int row lengths[])

Description

Get a row (or several rows) from the ML Operator A. If there is not enough space in
columns and values to hold the nonzero information, this routine returns a ‘0’.
Otherwise, a ‘1’ is returned.
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Parameters

A On input, an ML Operator (see ML Get Amatrix).

N requested rows On input, number of matrix rows for which information is returned.

requested rows On input, specific rows for which information will be returned.

allocated space On input, length of columns and values.

columns On output, the column numbers of each nonzero within each row re-
quested in requested rows (where column numbers associated with
requested rows[i] appear before column numbers associated with
requested rows[j] with i < j).

values On output, the nonzero values of each nonzero within each row re-
quested in requested rows (where nonzero values associated with
requested rows[i] appear before nonzero values associated with
requested rows[j] with i < j).

row lengths On output, row lengths[i] indicates the number of nonzeros in row
i.

Prototype

int ML Set Amatrix Getrow(ML *ml object, int k, int (*getrow)(ML Operator *, int ,
int* , int,

int*, double* , int*), int (*comm )(double *vec, void *data),
int comm vec leng)

Description

Set the matrix getrow function for the discretization matrix associated at level k within
the multigrid solver context ml object.

Parameters

ml object On input, ML object pointer (see ML Create). On output, matrix
getrow function is associated with the discretization matrix at level
k.
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k On input, indicates where the matrix getrow function pointer will
be stored within the multigrid hierarchy.

getrow On input, a function pointer to the user-defined matrix getrow func-
tion. See Section 11.1.

comm On input, a function pointer to the user-defined communication func-
tion. See Section 11.2.

Prototype

int ML Set Amatrix Matvec(ML *ml object, int k, int (*matvec)(ML Operator *, int,
double *,

int, double *))

Description

Set the matrix-vector product function for the discretization matrix associated at level k
within the multigrid solver context ml object.

Parameters

ml object On input, ML object pointer (see ML Create). On output, matrix-
vector product function is associated with the discretization matrix
at level k.

k On input, indicates where the matrix-vector product function
pointer is stored within the multigrid hierarchy.

matvec On input, a function pointer to the user-defined matrix-vector prod-
uct function. See Section 11.1

.

Prototype

int ML Set ResidualOutputFrequency(ML *ml object, int output freq)
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Description

Set the output frequency of residual information. ML Iterate prints the two norm of the
residual every output freq iterations.

Parameters

ml object On input,ML object pointer (see ML Create). On output, residual
printing frequency is set.

output freq On input, value to use for printing frequency.

Prototype

int ML Set Smoother(ML *ml object, int k , int pre or post, void *data,
int (*func)(ML Smoother *, int, double *, int, double *), char

*label)

Description

Set the smoother (either pre or post as indicated by pre or post) at level k within the
multigrid solver context to invoke the user-defined function ‘func’ and pass in the data
pointer ‘data’ via ML Get MySmootherData.

Parameters

ml object On input, ML object pointer (see ML Create). On output, a
smoother function is associated within ml object at level k.

k On input, indicates where the smoother function pointer will be
stored within the multigrid hierarchy.

pre or post On input, ML PRESMOOTHER or ML POSTSMOOTHER indi-
cating whether the smoother should be performed before or after
the coarse grid correction.

data On input, a data pointer that will be passed into the user-defined
function ‘func’.
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func On input, smoothing function to be used at level k when perform-
ing a multigrid V cycle. The specific signature and details of this
function are given in Section 8.

label On input, a character string to be associated with Smoother. This
string is printed by some routines when identifying the method.

Prototype

int ML Set Tolerance(ML *ml object, double tolerance)

Description

Set the convergence criteria for ML Iterate. Convergence is declared when the 2-norm of
the residual is reduced by ‘tolerance’ over the initial residual. This means that if the
initial residual is quite small (i.e. the initial guess corresponds quite closely with the true
solution), ML Iterate might continue to iterate without recognizing that the solution can
not be improved due to round-off error. Note: the residual is always computed after
performing presmoothing on the finest level (as opposed to at the beginning or end of the
iteration). Thus, the true residual should be a little bit better than the one used by ML.

Parameters

ml object On input,ML object pointer (see ML Create). On output, tolerance
is set for convergence of ML Iterate.

tolerance On input, value to use for convergence tolerance.

Prototype

int ML Solve MGV(ML *ml object, double *din, double *dout)

Description

Perform one multigrid V cycle iteration to the solve linear system defined within ml object.

63



Parameters

ml object On input, ML object pointer (see ML Create).

din On input, the right hand side vector to be used when performing
multigrid.

dout On output, an approximate solution obtained after one multigrid V
cycle.

†Nlevels refers to the argument given with ML Create.
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