SANDIA REPORT

SAND2010-xxx
Unlimited Release
Printed January 2010

Thyra Coding and
Documentation Guidelines

(TCDG)

Version 1.0

Roscoe A. Bartlett
Optimization & Uncertainty Estimation Department

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia
Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees,
nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied,
or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any infor-
mation, apparatus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government, any agency thereof, or any of their contractors
or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of
the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available
copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http:/www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND?2010-xxx
Unlimited Release
Printed January 2010

Thyra Coding and
Documentation Guidelines

(TCDG)

Version 1.0

Roscoe A. Bartlett
Optimization/Uncertainty Estim

Sandia National Laboratorigg\lbuquerque NM 87185 USA,

Abstract

Coding and documentation guidelines help to improve thédityuaf code and facilitate
collaborative development. This document covers C++ apdinde formatting, and Doxygen
documentation guidelines that have been establisheddarritinos package Thyra. Many of
these guidelines are followed in other Trilinos packageseals While some of the guidelines
outlined in this document are more specifically targetedhyr@, most of the guidelines are
more general that Thyra or even Trilinos.

*Sandia is a multiprogram laboratory operated by Sandia @atn, a Lockheed-Martin Company, for the United
States Department of Energy under Contract DE-AC04-94A085

Contents

INErOUCHION . .. e e e
Alpha-numeric item designationsttt b i i
Naming conventions (NC) ...
Naming and organization of source files (NOSF) ... it
COAING QUIAENINES« oo oo et e e e e e e e e e

5.1 General coding guidelines (GCfG) ..
5.1.1 Error handliﬂg ..
5.1.2 Memory managemént ...
5.1.3 Object CoNtrolot e
5.1.4 Objectlntrospectibn ...
5.1.5 Miscellaneous coding gwdellhes
5.2 Specification of for data members and passing and rewwhjects from functions .
\6 Formatting of source cobe ..
6.1 General formatting source code principles (F$CP)
6.2 Specific guidelines for formatting source code (#SC) e
7 Doxygen documentation QUIdENINESvv e e
7.1 General principles for function and class level docutami@m (DOXP)
7.2 Specific Doxygen documentation principles (DOX) . e
RETEIEINCES . . . v v ettt e e e e e e e

o1 (W N[

Appendix

A _Summary of QUIdEIINESttt e e e
B Summary of “C++ Coding Standards” (CPPCS) with amendments.
C __Summary of Teuchos memory management classes and idioms..................
D Miscellaneous amendments to “C++ Coding Standards” . e
D.1 Amendments to items related to compiler/linker mcotrmm
D.2 Amendments for 'using’ declarations and directives.......
[E_Arguments for adopting a consistent code formatting style... oo
E.1 Statements on coding style from varied persons andganizations
E.1.1 Open source software (the GNU project)ccoueivo....
E.1.2 Agile Methods (Extreme Programming)couwueeeuenenen..
E.1.3 Code Completettt i e e e
E.1.4 Lockheed Martin Joint Strike Fighter C++ Coding Staad.
E.2 The keyboard analogy forcoding styles
.3 CONCIUSIONS . . &t ettt e et e e e
F Guidelines for reformatting of source code......... oo

1 Introduction

This document deals with C++ coding guidelines startingnftbe foundation of the guidelines in
the book “C++ Coding Standards” by Sutter and Alexandre4@] ({the 101 items are outlined in
AppendixX B) and the Teuchos-based memory management ajppdescribed in [1]. The
guidelines in this document are specifically designed toesidthe development of object-oriented
numerical C++ libraries and to utilize the tools in the Trids packag&euchos . While the main
purpose of of this document is to define guidelines for Thypfawgare (for both interfaces and
adapters), it is also general enough to be applied to mamy ptiojects that, for instance, might
interact with Thyra.

The book “C++ Coding Standards” [10] covers many topics #ratmore general than C++ and
can be consider to be general design issues. As a resulbadblsprovides a fairly comprehensive
foundation for creating well designed, high-quality C+fta@re. The goal of this document is not
to restate what is in [10] but instead to fill in some gaps itieerally left by the authors and to
provide amendments to specific items in the book and taikmtfor numerical libraries. The
zeroth item (first item, zero based) “Don’t sweat the smaiffintentionally avoids specific
recommendations on issues such as the conventions for gadentifiers and the formatting of
code since these are arbitrary. While issues related tongatyle are much less important that
other issues, there are arguments for adopting a more tenisde formatting style and some of
these arguments are outlined in Appendix E. Therefore, bitleegourposes of this document is to
suggest reasonable and minimal guidelines for naming ciores and code formatting that
provide for enough code uniformity to facilitate collabtiva code development, code reviews, and
maintenance.

More important than code formatting, a consistent set ofingroonventions for C++ classes,
functions, variables, and other entities also helps to ampicollaborative software development
and quality. Also, since clients of the software must interith these names, it is even more
important that a set of naming conventions be used as centlisais possible in the client
interfaces.

Finally, more important general C++ coding guidelines argeced that append and amend those
described in [10]. While formatting and naming recommeiutet do not affect the meaning of
C++ code, other coding guidelines do and therefore theyredéive more attention and should be
considered more seriously.

The rest of the main document is organized as follows. Analphmeric convention for naming
the various guidelines described in this document is gimeBdction 2. Then, general naming
conventions are presented in Section 3 and they help pravadatext for later code examples.
This is followed in Section|4 with guidelines for naming arrdamizing source files. Next,
important general C++ coding guidelines are described @i@5 that affect software quality in
critical ways. Unlike naming conventions and code fornmattithese guidelines are difficult to
change after a significant amount of code has been writtedifowing this, reasonable and minimal
formatting guidelines are covered in Section 6. Finallydglines for Doxygen documentation are
provided in Section 7.

Several appendices are included that deal with a numbepa@fstoThe guidelines presented in this
document are summarized in Appendix A. The 101 guideline® ff10] are listed in Appendix B

along with specifying which items are amended or invaliddig the guidelines in the current
document. A summary of the idioms and conventions surraghtlie use of the Teuchos memory
management classes are presented in Appéndix C. Appgendixtains discussions of items from
[10] that are amended or invalidated in the Thyra coding gjineés. Most importantly, a
clarification ofusing declarations is given that is both more rigid in some wayslasslrigid in
other ways than what is described in [10, Item 59]. Appendgies arguments for adopting a
consisting code formatting style in a single developmeait®r single project (which is more
consistent with current Agile development methods). lyagtbpendix F gives guidelines for when
one developer can legitimately reformat a source file writig another developer when a more
consistent code formatting style is not agreed upon.

2 Alpha-numeric item designations

Specific items in this document are to be refereed to usingenai®d acronyms starting with and
the version number (e.g. 1.0). For example, the first namémyention guideline can be refereed
to asTCDG 1.0 NC 1 In this way, these short precise alpha-numeric designatich adfCDG
1.0 NC 3can be used in code reviews as short-hand references tdispeiidelines. The version
number of the coding standard is important in order to allharges in future coding guidelines
and allow the numbers to change from version to version (¢Qy1in TCDG 1.0 might become
NC 3in TCDG X.Y).

In addition, this document is based on [10] and those guidslwill be refereed to using an
enumerated acronym such@PPCS Item 15(i.e. “Use const proactively”).

3 Naming conventions (NC)

C++ classes, functions, variables, data members etc. glheuhamed and used in a fairly
consistent manner. The following guidelines are consisiétih common practice as exemplified

in [8].

e NC 1: Capitalize C++ class and struct names 8snmeCl ass: Names for C++ classes and
structs should generally be capitalized and separate vetiaisld be concatenated and
capitalized (i.e. “Camel Case”). For example:

class SomeClass {...};

e NC 2: Capitalize C++ namespace names@sneNaneSpace: C++ namespaces should
follow the same naming convention as C++ classes and nacegpaes should not contain
too many acronyms and should not be too short or too commarexample:

namespace MyNameSpace {

} /I namespace MyNameSpace

e NC 3: C++ enum type names should begin wiilas ESome Enumand enum values should
use all caps and scope context3@QVE_ENUM VAL UE: Enumeration type names should
follow the same convention as for class and struct namesbytghould also begin with the
capital letter 'E’ to signify that this type is an enum. Enuat®n values should be all
upper-case with underscores between words and should wseraan prefix for scoping
within the enum type. Also, enum values should use the defalile assignment defined by
the compiler in general as this aids their use as indexegzenwmbased arrays. For example:

enum ESolveStatus {
SOLVE_STATUS_CONVERGED,
SOLVE_STATUS_UNCONVERGED,
SOLVE_STATUS_UNKNOWN

b

Justification Using a capital 'E’ forenums allows the definition of other types with the same
basic name that contain other data. For exanfe|veStatus in anenum enumerating the
different types of solve status aSdlveStatus is a C++ struct that contains an

ESolveStatus member along with some other data. The use of the scoping frefi
SOLVESTATUS above) is also recommended iin [7, Section 11.4].

e NC 4: C++ object instance identifier names should begin with a Ioease letter as
sone(bj ect : Formal function arguments and other object identifierausthdn general,
start with a lower-case letter and then use capitalizatioridllowing words with no
underscores between words in general. For example:

ClassTypel obj;
ClassType2 objectForMyThing;
ClassType3 objectForYourThing;

Exception:ldentifiers that have mathematical symbols in them suoch dsandalpha
should use lower case names separated by underscdresexample:

Vector curr_x;
Matrix curr_J;
Scalar curr_alpha;

Justification: The Java conventioabjectldentifierName using capitalization with no
underscores produces shorter readable identifiers foriginghmes but does not work well
for identifiers with math symbols. With math symbols, it isgartant to maintain the case of
the symbol ag andX may mean something totally different mathematically and it
confusing and/or ambiguous to write eitfearrx —or currX . In these cases, it is far better to
use underscores and writerr _x as shown above. While in it is considered bad practice to
differentiate variable names by case alone (see “Don’edffitiate variable names solely by
capitalization” in [7, Section 11.7]), this is very commanmath and mathematical software
should support this.

e NC 5: C++ class data member names should begin with a lower-caser lend end with an
underscore asonmeDat aMenber . Names for data members within a class should use the
same naming convention as for other object identifier narneshould end with an
underscore. For example:

class SomeClass {
public:

private:
int someDataMember _;

3

Justification: Using an underscore after a data variable name helps to deérseope of the
variable and differentiate that name from a local varialsla member function that may
otherwise result and result in “shadowing” which causesgimlity problems on some
compilers.

Exception Public date members in simple C++ structs (i.e. where nariamnts need to be
maintained) should not contain underscores. For example:

struct SolveStatus {
ESolveStatus solveStatus;
double achievedTol;
std::string message;

Exception:ldentifiers that have mathematical symbols in them suoch &sandalpha
should use lower case names separated by underscdresexample:

Vector curr_x_;
Matrix curr_J_;
Scalar curr_alpha_;

Justification: SeeNC 4 above.

e NC 6: C++ function names should begin with a lower-case letter as
someFuncti on(...): Names for functions should use the same naming convengion a
for object identifier. For example:

class SomeClass {
public:
void someMemberFunction(...);

3

void someOtherFunction(...);

Exception:ldentifiers that have mathematical symbols in them suoh dsandalpha
should use lower case names separated by underscdresexample:

class SomeClass {

public:
const Vector& get x() const;
const Matrix& get J() const;
Scalar get alpha() const;

b

Justification: SeeNC 4 above.

e NC 7: Name C++ pure abstract base clas€isobBase, default implementation base
classesBl obDef aul t Base, and default concrete implementation classes
Def aul t TypeABI ob: In general, the top-level C++ base class for some absbracti
should use the post-fidase appended to the class name (&/ectorBase) and the base
class should contain (almost) no implementations andiogrtao object data (see Item 36
in [10]). If a default implementation of some of the aspedtthe base class are desired (to
make it easier to define concrete subclasses), then thejddwput in a derived node
subclass with the post-fidefaultBase (e.g.VectorDefaultBase). Any default concrete
implementation of an abstraction should generally use tbfixDefault appended to the
beginning of the name along with any other important pref(eeg.DefaultSpmdVector).
For example:

/I Pure virtual base class
class VectorBase
. ... Il Other base classes
{
public:
virtual void applyOp(...) const = 0;

b

/I Node base class with some default implementations
class VectorDefaultBase
. virtual public VectorBase

{
public:

void applyOp(...) const; // default implementation
Y

/I' A general default implementation for SPMD vectors
class DefaultSpmdVector
: virtual public VectorDefaultBase // use some default impl ementations

{
public:

void applyOp(...) const; // Specialized overrides
private:
b

e NC 8: Prefer to name const and non-const access functioggea#art () and
get Nonconst Part (), respectivelyIn general, functions that return objects that are
contained within a wrapper object should have the pigéinconst added to the function
that returns the non-const reference (or pointer) to théatoad object. For example,

class SomeClass {

public:
RCP<Part> getNonconstPart();
RCP<const Part> getPart() const;

Justification The choice to name the access functigetdlonconstPart() andgetPart()

as opposed tgetPart() andgetConstPart() is somewhat arbitrary. However, using
nonconst should be preferred in order to make it more explicit that a-nonst object
reference is being requested. Also, a constant view of agbain object is always cheaper
that returning a non-constant view of the part (see the dison of the “generalized view”
design pattern in [1]) and therefore to be safe and error ersithe of efficiency, the
non-constant access function should be harder to call treodnstant access function.

4 Naming and organization of source files (NOSF)

Since most C++ code is organized around classes, the filwteushould also primarily be
organized around classes and the nonmember functionstbeadt with these classes. The
primary goal of these file naming guidelines is to create fdmas that are globally unique and
will therefore facilitate#include s without need for directory paths in tmclude statement.
The basic idea is that a source file should be named based drit\Wwhs, not where itis. The
following guidelines help to define how to organize code sdarce files and how to name those
source files. The directory structure of source files is beythie scope of this document.

e NOSF 1 Use file extension names hpp (C++ header),*. cpp (C++ source),*. h (C
header), and . ¢ (C source) These file names avoid common problems with portability to
various Unix and Windows platforms and enable better togigpsrt (like language-specific
formatting in Emacs).

e NOSF 2 Include Only one major C++ class with supporting code per theaand source
file with name(sNanmeSpaceAl nner Nanespace_SonmeCl ass. [hpp, cpp] : Asa
general rule of thumb, assign the source code for any majerclass and supporting code
to a single set of header and source files. The file name shewdrbposed out of the
namespace names enclosing the classes and other code dlotigevelass name itself. For
instance, for the clagdameSpaceA::InnerNamespace::SomeClass , the header and source
files would be nametlameSpaceA InnerNamespace _SomeClass.[hpp,cpp] . This
convention assures that the file names will be globally umido addition, having a single
set of files for each class helps to keep a single encapsulatiib of code together which
makes searching the encapsulation unit easier.

e NOSF 3 Use internal include guards in all header fileall header files, without exception,
should use include guards [10, Item 24]. For example, the file
NameSpaceA_InnerNamespace _SomeClass.hpp would have the basic structure:

II' @HEADER
..
/I @HEADER

#ifndef NAMESPACEA_INNERNAMESPACE_SOMECLASS_HPP
#define. NAMESPACEA_INNERNAMESPACE_SOMECLASS_HPP

#include "SomeFile.hpp"

#endif //' NAMESPACEA_INNERNAMESPACE_SOMECLASS_HPP

Above, the comment NAMESPACEAINNERNAMESPACIEOMECLASS1PPafter the final
#endif helps to show the preprocessor structure in the file and [iigéh cases where
other#ifdef —or#if structures are used.

This is a very minor amendment to Item 24in [10].

8

e NOSF 4 Partition template code into the filés | eNane_decl . hpp,
Fi | eNane_def . hpp, Fi | eNare. hpp, andFi | eNane. cpp to allow for both implicit
and explicit instantiation and handling of circular typefeeences The template declaration
code and inline function definitions are placedriieName _decl.hpp , the template
function defintions are placed kleName _def.hpp , the general client interface that
automatically switches between implicit and explicit argiation isFileName.hpp , and the
explicit instantiations are placed kieName.cpp . Specific details about how these files
should be laid out are given in Section 5.1.5.

5 Coding guidelines

Coding guidelines, unlike formatting guidelines, greatiffluence the meaning of C++ programs
and therefore require a high priority level. The book “C++dw Standards” [10] that this
document is primarily based on provides many good and irapbrtoding guidelines that should
be followed and by default all of the items in this book areuassd in this document. Here, we
provide additional coding guidelines and, in some casespdritems in [10]. Where this
document is silent, [10] is to be considered the authoviéasiource for guidance. Some
miscellaneous amendments to the items in [10] are given jpeAgdix D.

5.1 General coding guidelines (GCG)

Below several different general coding guidelines areudised. These guidelines affect software
quality in a major way and are not just a matter of persondiepeace or style.

5.1.1 Error handling

e GCG 1: UseTEST_FOR EXCEPTI ON(. . .), TEUCHOS ASSERT(. . .) and related
macros for reporting all errors, even developer programgnérrors For developer errors,
prefer to throw exceptions derived frostd::logic ~ _error instead of using the
assert(...) macro as recommended in [10, Item 68]. A “logic error” wouleltbeated
differently from a real run-time error and would therefor@e with different assumptions
about the state of the object after the exception was thrémvparticular, a “real error” (i.e.
not just an internal developer error) should always provigebasic guarantee to leave the
object in a valid state [10, Item 71], while code that throwtogic error” can not make any
such guarantees in general. Therefore, objects that thxoeptions derived from
std::logic _error should generally be viewed as unusable and should be deleted
immediately. To enable debugging, a break-point can aleayslaced on function
TestForException _break() L which will be called just before an exception is thrown
through these macros. In the future, more sophisticatadreslike automatically attaching
a debugger or printing the call stack may be added for sontersgs Therefore throwing an
exception derived fromatd::logic ~ _error using these macros should be preferred to using
theassert(...) macro as it gives us more control over what happens when othesé
types of programming errors occurs. Also, these exceptiaoras make it much easier to
generate good error messages that you would get from a simplef theassert(...)
macro.

5.1.2 Memory management

e GCG 2: Avoid the use of raw C++ pointers in all but the lowest-levetle The tools
mentioned below which include all of the standard C++ comaclasses (when using a
checked STL implementation)euchos::Ptr , Teuchos::RCP , Teuchos::Array
Teuchos::ArrayRCP , andTeuchos::ArrayView allow most code to be written without any

in gdb, a break-point would be set AsTestForException ~ _break() .

10

explicit raw C++ pointers. In debug mode, these classesvdbiofull run-time checking that
result in exceptions being thrown and excellent error ngsséi.e. instead of segfaults).
When a check C++ standard library is used (e.g. wiGXXLIB_DEBUGs defined with g++),
then all of the standard C++ library classes are checked Bs we

GCG 3: Usest d: : stri nginstead ofthar * or const char *: While std::string

is not debug checked in a typical implementation, indexingd @ather unchecked operations
with std::string objects is much less common in numerical code and theresdess
likely to result in memory-usage errors inside of numeriwade. However, when a checked
C++ library implementation is used (e.g. whesXXLIB_DEBUGSs defined with g++), then
std::string is very safe.

GCG 4: UseTeuchos: : Pt r as function arguments in the place of raw C++ pointers to
single objects where no persisting association existse Tables|3 and 4): The class
Teuchos::Ptr simply takes the place of a raw pointer to a single object $atways

default initialized to NULL. In debug mode, it throws excigpis when trying to dereference
a null pointer. Using this class helps to eliminates the rfeedhecking for NULL to avoid
undefined behavior when one dereferences a NULL pointer.

GCG 5: UseTeuchos: : RCPfor memory management of single dynamically allocated
objects and for handling persisting associatiofsee Tables'3 and 4): Replace all references
to the clasdoost::shared _ptr in all items in [10] withTeuchos::RCP .

GCG 6: Use non-member constructors for all reference-type clagséorce dynamic
allocation returning strong owningeuchos: : RCP objects Using non-member
constructors gives greater flexibility in how a class objsdhitialized, simplifies the
maintenance of the class, and makes the debug-mode noiteytcaecking bullet-proof [1].

Non-member constructors take the form:

class SomeClass {
public:
/I No public constructors!

I3 "

/I Non-member constructor
RCP<SomeClass> someClass(...);

Note that views of concrete classes do not have not use “glered view” semantics and
can instead use “direct view” semantics where appropridée all the details about the
“non-member constructor” idiom and “direct views” in [1].

GCG 7: Specify “generalized view” semantics for all views of abstrobjects Using
“generalized view” semantics leads to the greatest impigatieon freedom and the best
performance in all cases; abet with more strict usage pati@ee the “generalized view”
design pattern in [1].

If SomeBaseClass provides a view if itself a®art objects, then applying the generalized
view design pattern results in the interface functions:

11

class SomeBaseClass {

public:
virtual RCP<Part> getNonconstPart() = 0;
virtual RCP<const Part> getPart() const = 0;

b

The “generalized view” design pattern and a concrete exaifinpin Thyra is described in
great detail in[1].

GCG 8: UseTeuchos: : ArrayVi ewas function arguments in the place of pointers into
raw arrays or other container classes where no persistirgpamtion exists and the array
does not need to be resizgdee Tables!3 and 4): This class allows all of the useful
capabilities of astd::vector which do not include adding or removing entries. In debug
mode, all of the access functions (including iterators)fallg checked. In optimized mode,
unchecked raw pointers are used and the only overhead is argjgment (which is usually
passed with raw pointers anyway).

GCG 9: UseTeuchos: : Array in place ofst d: : vect or as a contiguous general
purpose data containei(see Tableis|3 and 4): The primary reason toTesghos::Array
instead ofstd::vector is thatTeuchos::Array is part of the system memory management
types and results in stronger run-time checking. Whdechos::Array ~ gets all of its real
functionality fromstd::vector , prefer to usdeuchos::Array as we provide more
capabilities and portable debug checking. For instarcehos::Array::operator|] is
range checked in debug mode regardless whether there igdaning checked STL
implementation or not (see [10, Item 83]). In debug modejttrator is also run-time
checked. In additionTeuchos::Array will automatically convert into an
Teuchos::ArrayView object safely when used in function calls and in debug modle, w
catch dangling references.

GCG 10: UseTeuchos: : Arr ayRCPfor memory management of dynamically allocated
objects stored in contiguous arrays of data and for pensgsassociations involving
contiguous arrays(see Tables 3 and 4): Note thauchos::ArrayRCP does notake the
place of a contiguous container class suchieashos::Array . A Teuchos::ArrayRCP

object can not change the size of the array, it can only peofod reference-counted sharing
of an array of data of fixed size and provide sub-views of gumus parts of the managed
array. All access to data (both througjeuchos::ArrayRCP::operator]] and iterators) is
run-time checked in a debug build.

GCG 11: Always returnPt r , RCP, Arr ay Vi ew, andAr r ay RCP smart pointer objects by
value, never by referencésee Tables 5 and 6): Returning smart pointer objects hyeval
critical for properly setting up the machinery for persigtiand semi-persisting associations
and to fully enabled debug-mode checking [1].

GCG 12 Only return a raw C++ reference from a function for non-pesting associaitons
and use the reference and discard it in the same same state(aea Tables|3 and 4): Raw
C++ references cannot be used to detect dangling referemesgebug-mode build and
therefore should only be used for non-persisting associatjl1].

GCG 13 Return onlyPt r andAr r ay Vi ewobjects by value to establish semi-persisting
associations, never a raw C++ reference to be used as a sersigting associatian(see

12

Tables 3, 4, 5, and 6): Objects of type andArrayView are light-weight and efficient in a
non-debug mode build but are fully checked in a debug-modd buod therefore lead to safe
efficient code [1].

e GCG 14: When raw C++ pointers must be exposed (i.e., due to intanfaeiith
non-compliant code), minimize the amount of code expostx taw pointer When raw
C++ pointers must be exposed to communicate with other dutaises raw C++ pointers,
encapsulate the raw C++ pointer as fast as possible and tiygige up a raw pointer at the
last possible moment. For example,

SomeForeignClass* get_raw_foreign_obj_ptr();
do_some_foreign_stuff(SomeForeignClass* foreign_obj_ ptr);

void foo()

{

Il Get the raw pointer into a proper encapsulated class objec t right away!
Ptr<SomeForeignClass> foreignObj(get_raw_foreign_obj _ptr());

/I Lots of code ...

Il Only expose the raw pointer directly in the foreign functi on call
do_some_foreign_stuff(&*foreignObyj);

5.1.3 Object Control

e GCG 15 Accept user options at runtime througfieuchos: : Par anet er Li st object
by deriving from théTeuchos: : Par anet er Li st Accept or interface The
Teuchos::ParameterList class provides many useful features that make it easy tgpacce
user options in a flexible and fully validated way (see Tesof@cumentation for more
details). TheTeuchos::ParameterListAcceptor interface defines a consistent flexible
protocol for setting and managing a parameter list.

e GCG 16: Fully validate all parameters and sublists in accepted
Teuchos: : Par anet er Li st objects usingyal i dat ePamat er s(. ..) and other
means All user parameters and sub-lists passed in through a
Teuchos::ParameterListAcceptor should be fully validated. The mail tool for this is the
member functiorvalidateParameters(...) . Using this function and other other
approaches, when a user misspells a parameter or subskst thhe wrong type for a
parameter, or provides an invalid parameter value, thelygstl an exception thrown with a
helpful error message. Also, objects are only responsini@dlidating their own parameters
and sub-lists, and not those of other objects that they hdidists for.

5.1.4 Object Introspection
e GCG 17: Always send output to some genesald: : ost r eamobject; Never send output

directly tost d: : cout orstd: : cerr;Never print output withprint (...) or
printf(...):Sending output directly tetd::cout orstd:cerr destroys the

13

flexibility of numerical software and does not perform well$PMD programs. Instead,
produce output using one of the following approaches.

e Prefer to print output through deuchos: : FancyOSt r eamobject instead of through a
barest d: : ost r eamobject to more easily produce indented formatted output
Teuchos::FancyOStream class object can wrap amsyd::ostream object and helps to
produce structured indented output and to create more léadatput in an SPMD program
(even when every processor produces output).

e Derive fromTeuchos: : Descri babl e and implement the functiortescri pti on()
anddescri be() to allow clients to print the current state of an obje@he
Teuchos::Describable interface is the appropriate way to allow clients to prird turrent
state of an object in a flexible way. The verbosity of the otutpeontrolled by an input
enum parameter.

e Derive fromTeuchos: : Ver boseObj ect and print toxt hi s- >get OSt r ean() to
give information about what an object is doin@lients can set the output stream and the
verbosity level through a parameter list (see Thachos::ParameterListAcceptor
interface described above) or can set them directly in ctde output stream is set, then
Teuchos::VerboseObjectBase::getDefaultOStream() will be used.

e As alast resort, always prefer printing to
*Teuchos: : Ver boseObj ect Base: : get Def aul t OSt r ean() instead of
std:: cout orstd:: cerr: The stream provided by
*Teuchos::VerboseObjectBase::getDefaultOStream() is set up by default to do clean
printing in an SPMD program and can also be set up through a
Teuchos::CommandLineProcessor object to control how output is produced and
formatted.

5.1.5 Miscellaneous coding guidelines

e GCG 18 Prefer to explicitly define template arguments in a templatetion call to avoid
protability problems and enable implicit covnersions gduhargumentslf it is not too
inconvenient, then preferring to explicitly define the tdate arguments in a template
function call can massively improve the portability of tdatpd C++ code. For example, in
Thyra, every non-member function is templated onSbaar type such as:

template<class Scalar>
sum(const VectorBase<Scalar> &x);

When portability is a concern or when implicit conversionghie input arguments are
needed, then prefer to call such functions by specifyinge¢hgplate argument(s) as:

Scalar mySum = sum<Scalar>(myVec);

e GCG 19 Use the template functioheuchos: : as<Tt o>(T_f ron) for all conversion
of data types that may result in loss of precision or in an mect conversion The
templated C++ functioffieuchos::as<T _to>(T _from) and the class specializations that it

14

calls will contain run-time tests, in debug mode, for thautessof a conversion to ensure
correctness. This includes the conversion of strings intolvers (i.e. replacingtof() and
atoi()) as well as conversions that can result in loss of precisianeaning (such as
double toint ,long int toint ,int tochar ,unsigned int toint , etc.). The optimized
implementations of these conversion functions are tylyicaichecked for speed. A version
this function which always does run-time checking is alsailable called

Teuchos::asSafe<T _to>(T _from) in order to validate user data.

Justification Unchecked conversions are the result of many differerggyqf errors and a
fully safe program needs to be able to check all such potgntinsafe conversions at
run-time. The implicit conversion rules allowed in C whiclmere carried over to C++ can
result in very unsafe code.

GCG 20 Use namespace enclosure for the definition of C++ class membebers The
member functions of a class should be defined in the same asdéeir declarations and
should generally be defined within a namespace enclosurexample, given the
declaration of

Il SomeNamespace_SomeClass.hpp
namespace SomeNamespace {
class SomeClass {

public:
void someFunc();

b

} /I namespace SomeNamespace

the safest and one of the tersest ways to define the membd¢iofusin the source file is

/I SomeNamespace_SomeClass.cpp
namespace SomeNamespace {

void SomeClass::someFunc()

{
-

} /I namespace SomeNamespace

Justification Using the namespace enclosure insteadusirg namespace

SomeNamesapce directive insures that you can never accidentally providetlaer definition
for some other class member function in another namespag#icE namespace
qualification is not needed since if one misspells any path@frototype, then the compiler
will issue an error message.

15

e GCG 21: Use explicit namespace qualification for the definition bhahmember C++
functions For example, for the nonmember function prototype

/I SomeNamespace_someFunc.hpp
namespace SomeNamespace {
void someFunc(const int data);

} /I namespace SomeNamespace

the safest way to define the nonmember function is

/I SomeNamespace_someFunc.cpp

void Thyra::someFunc(const int data)

{
-

Justification Using explicit namespace qualification avoids problemspafling and other
mistakes that can accidentally result in the definition oéw function [9, Section 8.2]. Such
a mistake is caught at link time but it can be very hard to figurethe root cause of the
problem when this happens.

e GCG 22 For general functions, prefer to list function argumentshe order of input,
input/output, output, and finally optional arguments wigfallt values For example:

void someFunc(
const T1 &argl, II' Input
const Ptr<T2> &arg2, II' Input/Output
const Ptr<T3> &arg3, /I Output
const int argd = 0 /I Optional input argument with defualt val ue

);

This ordering of arguments is only a general suggestion é$emaht ordering of arguments

may be chosen based on other criteria. See Section 5.2 facapteon of the use of thetr
class.

e GCG 23: For non-member object functions, list the object as the firgiment passed in as
a const reference or non-const referenEer example:

void someModifyingFunc(
SomeClass &obj,
const int argl,

16

);

void someNonModifyingFunc(
const SomeClass &obj,
const int argl,

)

Note that in the case abmeModifyingFunc(...) , the output argument is listed first
instead of after the input argument(s) which breaks tygoalvention of having input/output
arguments (which all objects that are modified are) come afpait arguments. However,
this is more consistent with established convention suéh Bgthon and other languages
where theself argument is always the first explicit (or implicit) argumeNte that this is
also a situation where a non-const reference argument nila&esost sense.

GCG 24 Preferenuns tobool s as formal function arguments when conversion mistakes
are likely: While the built-in typebool is very convenient to use as a formal function
argument, it also allows for conversions from every builtyype and every pointer type.
While using an enumeration type and its values is more verhios also self documenting
and is safer. For example, what does the third argument nmethe ifollowing example?

apply(A, 2.0, true, x, y);
When thebool argument is changed to an enum, the function call becomes:
apply(A, 2.0, USE_TRANSPOSE, X, Yy);

the meaning is much more clear. Therefore, when self doctatien and compile-time
safety are important, prefer to define and as@ms overbool s as formal function arguments
(see [7, Section 12.6]).

GCG 25: Avoid overloading virtual functiongverloaded virtual functions cause sever
portability problems with many compilers and result in shaithg warnings that are
elevated to errors in may systems.

GCG 26 Avoid overloading functions on different smart pointerayge.g.RCP, Pt r ,
etc.} Overloading functions on different smart pointer typesg;lsasRCPor Pir can create
ambiguous function calls that will not happen when using @ pointers or references
[1]. Therefore, keep the names of the functions differechsas shown below.

void nonconstFoo(const RCP<A> &a);
void foo(const RCP<const A> &a);

GCG 27: Include only standard C++ headersc X>, not standard C headersX. h>, and
avoid allusi ng nanespace st d directives Only include the C++cX> versions of the
standard GX.h> headers. For example, inclugemath> , <cstdlib> , and<cassert>
instead okmath.h> , <stdlib.h> , and<assert.h> . Avoid all uses ofusing namespace

std directives and instead prefer explicit namespace qudiificasuch astd::sqrt or

17

using declarations such asing std::sqrt only within function definitions. See [9,
Section 16.1.2] for a complete list of the standard C++ waisiof the standard C headers.

Justification See Appendix D for a clarification of Item 59 in [10] dealingtfnthe issue of
using declarations and directives.

GCG 28 Break up templated code into four fil8senmeCl ass_decl . hpp,

SonmeCl ass_def . hpp, SoneC ass. hpp,andSonmeCl ass. cpp to support both
implicit and explicit instantiation, minimize recompilat, and avoid problems in mutually
dependent (i.e. circular) cod@®reaking up templated C++ code into the four files
SomeClass|[_decl, _def].[hpp,cpp] (as described below) allows for a portable and
bullet-proof solution to handing templated C++ code whiltbves for a) controlled explicit
or implicit template instantiation, b) minimization of firSme compilation, ¢) minimization
of recompilations, and d) handling of any and all types ofular dependencies in
declarations and definitions (same as are allowed with aprplated C++ code).

As an example, consider three clasaeB, andC whereA andB refer to each other and
whereC has no chance of being involved in a circular reference inaglA andB. The four
files A[_decl, _def].[hpp,cpp] for classA as well as the fil&_decl.hpp are shown below
(the other files for clasB are similar):

II' Ahpp

#include "A_decl.hpp"

#ifndef HAVE_THYRA_EXPLICIT_INSTANTIATION
include "A_def.hpp"

#endif

/I A_decl.hpp

#ifndef A_DECL_HPP
#define A_DECL_HPP

#include "B_decl.hpp" // Only include decl in case of circul ar ref
#include "C.hpp" /I No chance of cicular ref

namespace Thyra {
template<class Scalar>
class A {
pubic:
void doSomething(const B<T> &b) const;
private:
RCP<C<T> > c_;
3

} /I namespace Thyra

#endif // A_DECL_HPP

18

/I B_decl.hpp

#ifndef B_DECL_HPP
#define B_DECL_HPP

namespace Thyra {
template<class Scalar> class A; // Forward only due to circu

template<class Scalar>

class B {
pubic:

void doSomething(const A<T> &a) const;
I3

} /I namespace Thyra

#endif // B_DECL_HPP

/I A_def.hpp

#ifndef A_DEF_HPP
#define A_DEF_HPP

#include "B.hpp" // Must include for implicit instant to wor
namespace Thyra {

template<class Scalar>
void A::doSomething(const B<T>& b)

{
}

} /I namespace Thyra

b.doSomething(*this);

#endif // A_DEF_HPP

I A.cpp
#include "A_decl.hpp" /I Helps test header sufficiency
#ifdef HAVE_THYRA_EXPLICIT_INSTANTIATION

#include "A_def.hpp"
#include "Teuchos_ExplicitinstantiationHelpers.hpp"

lar refl

k!

namespace Thyra {TEUCHOS_CLASS_TEMPLATE_INSTANT_SCALR_TYPES(A)}

#endif // HAVE_THYRA_EXPLICIT_INSTANTIATION

19

General client code alwayscludes theA.hpp form of the file without regard for whether
implicit or explicit instantiation is enabled or not (i.ehether
HAVETHYRAEXPLICIT _INSTANTIATION is defined or not defined).

The 100% bullet-proof rules for breaking up template coke this are:

— All header-like declarations that would go into an ordinagn-template.hpp header
file go intoSomeClass _decl.hpp including class declarations and inline function
definitions.

— All implementation code that would go into an ordinary nemplate*.cpp source
file go intoSomeClass _def.hpp including class member definitions and non-member
function definitions.

— Always includeSomeOtherClasss _decl.hpp in theSomeClass _decl.hpp file if there
is any chance that a circular dependency between the tws 8gpeeOtherClasss and
SomeClass might exist. Otherwise, if there is no chance of a circulgraetelence then
the headeBomeOtherClasss.hpp can be included. If the two classes are in different
libraries then there is no chance of a circular type depenydfs].

— If SomeClass _decl.hpp includedSomeOtherClass _decl.hpp , then
SomeClass _def.hpp must includeSomeOtherClass.hpp . This is needed in order for
implicit instantiation to work correctly.

— The header fil&SomeClass.hpp is designed to be included by general clients and
either includes onlysomeClass _decl.hpp or also includessomeClass _def.hpp
depending on if implicit or explicit instantiation is beimged. When explicit
instantiation is being used the fi®meClass _def.hpp is hidden from general clients
and changes in it do not require recompilation of client code

— All required instantiations must be provided in the B@meClass.cpp . For standard
scalar types (e.glouble , float , std::complex<double> , std::complex<float> ,
etc.) the standard maci&UCHOSCLASS TEMPLATEINSTANT_SCALARTYPES(...) is
provided which is set at configure time to determine the ddgiequired explicit
instantiations. More general instantiations can also bpeed by defining a macro
in the fileSomeClass _def.hpp file and then instantiating this macro using the helper
macroTEUCHOSMACROTEMPLATEINSTANT_SCALARTYPES(...) (See examples from
real Thyra source code).

If you follow the guidelines above, you will never have prils with templated code. The
partitioning the template code into the four filtemeClass| _decl, _def].[npp,cpp] gives
template code all the desirable compilation propertiesoof-template code. That is,
changes to the implementation $dmeClass only require the recompilation of the source
file SomeClass.cpp and not any other source files. Also, the amount of code thatta C
compiler has to see to compile any sinylgp file is much less when explicit instantiation
is enabled and this can massively speed up first-time cotiggilaOverall, explicit
instantiation can massively speed up first-time compitasind later recompilations as code
is modified.

20

Class Data Members for Value-Type Objects

| Data member purpose | Data member declaration |
non-shared, single, const object const S s _;
non-shared, single, non-const object S s
non-shared array of non-const objects Array<S> as _;
shared array of non-const objects RCP<Array<S> > as _;

non-shared statically sized array of non-const objectgple<S,N> as _;

shared statically sized array of non-const objects | RCP<Tuple<S,N> > as _;
shared fixed-sized array of const objects ArrayRCP<const S> as _;
shared fixed-sized array of non-const objects ArrayRCP<S> as

Table 1. Idioms for class data member declarations for value-type ob

jects.
Class Data Members for Reference-Type Objects
\ Data member purpose \ Data member declaration
non-shared or shared, single, const object RCP<const A> a _;
non-shared or shared, single, non-const object | RCP<A> a;
non-shared array of shared const objects Array<RCP<const A> > aa

non-shared array of shared non-const objects Array<RCP<A> > aa

shared fixed-sized array of shared const objects | ArrayRCP<RCP<const A> > aa _;

“...” (const ptr) ArrayRCP<const RCP<const A> > aa _;
shared fixed-sized array of shared non-const objeéisayRCP<RCP<const A> > aa _;
“...” (const ptr) ArrayRCP<const RCP<const A> > aa _;

Table 2. Idioms for class data member declarations for referenpesy
objects.

5.2 Specification of for data members and passing and returng objects from
functions

The guidelines for specifying local variables and data mens\lpassing objects to and from
functions, and returning objects from functions given ihdile summarized in Tables/1-6. In
general, it is assumed by default that arguments passedjgtnithe smart pointer typdé4r , RCP,
ArrayView , andArrayRCP are non-null by default. If the argument is allowed to be niién that
must be documented in the Doxyggparam field for that argument.

21

Passing IN Non-Persisting Associations to Value Objects &unc Args

Argument Purpose \

Formal Argument Declaration

single, non-changeable object (requiredy s or const Ss or const S &s
single, non-changeable object (optionalyonst Ptr<const S> &s
single, changeable object (required) | const Ptr<S> &s or S &s

single, changeable object (optional)

const Ptr<S> &s

array of non-changeable objects

const ArrayView<const S> &as

array of changeable objects

const ArrayView<S> &as

Passing IN Persisting Associations to Value Objects as Furags

| Argument Purpose

\ Formal Argument Declaration

array of non-changeable objectsonst ArrayRCP<const S> &as

array of changeable objects

const ArrayRCP<S> &ss

Passing OUT Persisting Associations for Value Objects as g Args

| Argument Purpose

| Formal Argument Declaration

array of non-changeable objegtsonst Ptr<ArrayRCP<const S> > &as

array of changeable objects

const Ptr<ArrayRCP<S> > &as

Passing OUT Semi-Persisting Associations for Value Objestas Func Args

Argument Purpose

Formal Argument Declaration

array of non-changeable objec

tsonst Ptr<ArrayView<const S> > &as

array of changeable objects

const Ptr<ArrayView<S> > &as

Table 3. Idioms for passing value-type objects to C++ functions.

22

Passing IN Non-Persisting Associations to Reference (or Wee) Objects as Func Args

| Argument Purpose \

Formal Argument Declaration

single, non-changeable object (requirg

donst A &a

single, non-changeable object (optiong

algonst Ptr<const A> &a

single, changeable object (required)

const Ptr<A> &a or A &a

single, changeable object (optional)

const Ptr<A> &a

array of non-changeable objects

const ArrayView<const Ptr<const A> > &aa

array of changeable objects

const ArrayView<const Ptr<A> > &aa

Passing IN Persisting Associations to Reference (or Valu@bjects as Func Args

| Argument Purpose

\ Formal Argument Declaration

single, non-changeable object

const RCP<const A> &a

single, changeable object

const RCP<A> &a

array of non-changeable objegtsonst ArrayView<const RCP<const A> > &aa

array of changeable objects

const ArrayView<const RCP<A> > &aa

Passing OUT Persisting Associations for Reference (or Vai) Objects as Func Args

| Argument Purpose \

Formal Argument Declaration

single, non-changeable object

const Ptr<RCP<const A> > &a

single, changeable object

const Ptr<RCP<A> > &a

array of non-changeable objec

tsonst ArrayView<RCP<const A> > &aa

array of changeable objects

const ArrayView<RCP<A> > &aa

Passing OUT Semi-Persisting Associations for Referencer(dalue) Objects as Func Args

| Argument Purpose

\ Formal Argument Declaration

single, non-changeable object

const Ptr<Ptr<const A> > &a

single, changeable object

const Ptr<Ptr<A> > &a

array of non-changeable objedtsonst ArrayView<Ptr<const A> > &aa

array of changeable objects

const ArrayView<Ptr<A> > &aa

Table 4. Idioms for passing reference-type objects to C++ functions

23

Returning Non-Persisting Associations to Value Objects

Purpose | Return Type Declaratiot

Single copied object (return by value)

S

Single non-changeable object (requirgdjonst S&

Single non-changeable object (optionalptr<const S>

Single changeable object (required) | S&

Single changeable object (optional) | Ptr<S>

Array of non-changeable objects ArrayView<const S>
Array of changeable objects ArrayView<S>

Returning Persisting Associations to Value Objects

| Purpose | Return Type Declaratior)

Array of non-changeable objectsArrayRCP<const S>

Array of changeable objects ArrayRCP<S>

Returning Semi-Persisting Associations to Value Objects

| Purpose | Return Type Declaration

Array of non-changeable objectsArrayView<const S>

Array of changeable objects ArrayView<S>

Table 5. Idioms for returning value-type

24

objects from C++ functions

Returning Non-Persisting Associations to Reference (or ae) Objects

Purpose | Return Type Declaration |
Single cloned object RCP<A>

Single non-changeable object (requiredjonst A&

Single non-changeable object (optionalpPtr<const A>

Single changeable object (required) | A&

Single changeable object (optional) | Ptr<A>

Array of non-changeable objects

ArrayView<const Ptr<const A> >

Array of changeable objects

ArrayView<const Ptr<A> >

Returning Persisting Association

s to Reference (or Value)dbjects

| Purpose

| Return Type Declaration |

Single non-changeable object

RCP<const A>

Single changeable object

RCP<A>

Array of non-changeable objectsAr

rayView<const RCP<const A> >

Ar

Array of changeable objects

rayView<const RCP<A> >

Returning Semi-Persisting Associations to Reference (oralue) Objects

| Purpose | Re

turn Type Declaration \

Single non-changeable object

Ptr<const A>

Single changeable object

Ptr<A>

Array of non-changeable objec

sArrayView<const Ptr<const A> >

Array of changeable objects

ArrayView<const Ptr<A> >

Table 6. Idioms for returning reference-type objects from C++ func-

tions.

25

6 Formatting of source code

At the minimum, source code should be formatted consistevithin a single file or a set of
tightly coupled files/[10, Item 0]. Ideally, source code skidoe formatted consistently enough
across a code project so as not to cause undue difficulty redimaaintenance and in performing
code reviews [7]. Some consistency in formatting helps arfddilitate multiple ownership and
shared development of a collection of software, such as trefe Programming (XP) [2] (see
Appendix E for an outline of the arguments for adopting a iaest code formatting style). By
“formatting” we generally refer to the use of white-spacéha line-to-line formatting of the
program or in the ordering of lines of code such that the megaof the program to the compiler is
unchangéEIThe handling of indentation styles can largely be autor@;tdﬂch allows individual
developers to work with any style they would like for filestiizey create but also makes it easy
for developers to edit files created by other developers aeg ko their styles as well. Appendix F
gives some guidelines for how individuals should conduetribelves where more than one code
formatting style is in use within a project.

Our main goal in this section is to try to provide reasonabEommendations for those formatting
issues that are largely a matter of style and personal gmederbut at the same time affect the
overall readability of the code and promote pair prograngra@nd joint ownership of code [2]. The
formatting and indentation guidelines presented hereagigely consistent with the
recommendations in [7, Chapter 31] and try to reduce the atafuright drift” that can occur

with some common formatting and indentation styles.

The indentation guidelines outlined below can be largetpm@atically supported by Emacs and
are used by the custom style “thyra” defined in the Emacs ppeckike cc—thyra—styles@l Other
custom styles can also be added to this file and used as wellofthese styles can be listed in
each source file and therefore anyone using Emacs can aitatyatise a particular indentation
style without having to fight the editor to manually refornecatie to abide by a foreign style.

6.1 General formatting source code principles (FSCP)

Some general principles of good formatting, based on treudgon in/[7, Section 31.1], are:

e FSCP 1 Formatting should accurately and consistently show théchkigstructure of the
code It is somewhat subjective what formatting styles “showltigical structure” of code
but McConnell makes some good arguments for some stylesotivers. However, it is up
the group of programmers to decide as a group what style itehwsv the logical structure”.

e FSCP 2 Formatting should improve the readability of the code forstnmeople There are
specific studies cited in [7, Chapter 31] that provide goddewe to prefer some styles
over others.

2While technically changing the name of a class, functionariable changes the meaning of a program, if name
changes are done in such a way as to avoid name collisiomsntraing conventions also do not affect the meaning of
the program and are therefore very much related to otherdtimy issues such as the treatment of “white-space”.

SEmacs supports multiple file-specific formatting styles @i+ and tools like Artistic Style [4] can format source
files from the command line. A flavor of the editor may also support indentation styles.

4SeeTrilinos/packages/thyra/emacs/README for a description of the “thyra” Emacs style

26

e FSCP 3 Formatted code should retain its formatting well when medifiespecially for
those modifications performed by automated toGlsanging one line of code should not
require changes to other lines of code to maintain the fdintpstyle.

e FSCP 4 Formatting style should follow the most common idiom unteesof the above
principles are violatedWhen there is no good technical argument for one formatiytg
choice over another, then the style choice that is the mastman should be usédThis is
not advocated per-say in [7, Chapter 31] but it is a good idegeneral to follow popular
idioms when there are several equally good choices andftiterthe decision is arbitrary.
However, not selecting a single style choice can creatcgaticomplexity in the code from
irregularity in formatting.

6.2 Specific guidelines for formatting source code (FSC)

Below, specific recommendations are spelled out that trptdarm to common practices but also
try to avoid excessive “right drift”:

e FSC I The formatting style in any single file or group of closelatetl files should be the
same Consistent formatting includes the placement of bradesntimber spaces to indent
etc. Justification This is recommended in [10, Item 0].

e FSC 2 Try to keep all text within the first 80 character columigeping most of the source
code within the first 80 character columns helps to make tke coore readable and helps to
facilitate side-by-side two-column editing and compansof source code. Most of the style
and indentation guidelines described below help to avoitbdbat extends beyond the 80th
column too rapidlyJustification “Studies show that up to ten-word text widths are optimal
for eye tracking” [10, Item 0]. Also, some developers ar# stiick with 80 column wide
terminals.

e FSC 3 Indent with spaces and not tabs (two spaces by defaliik amount of spaces to use
per indentation level is up to the individual developer butradentation of onljtwo spaces
is recommended (and is set in the ‘Emacs ‘thyra” indentasigte). A study showed that an
indentation offset of two-to-four spaces was optimal fadeoeading comprehension [7,
Section 31.2]. Whatever indentation amount is used, itlshioe consistent in at least each
source and header file [10, Item 0] (which can be enforcedgusicustom Emacs indentation
style). Emacs by default will put in a tab when the tab-widtkegual to the number of
indentation spaces. Emacs can be told to always use spateadrof tabs by setting:

(setq indent-tabs-mode nil)

in the indentation style (as is done in the “thyra” style).wéwer, it is easy to support
different preferences for the amount of spaces to indentsinygua user-defined indentation
style for Emacs (sorryi users).

Justification “Some teams legitimately choose to ban tabs ... when misaigsn indenting
into out-denting and non-denting.” [10, Item 0].

5The measure of the commonality of a particular style choarelve determined according to a local software devel-
opment community or the larger developer community.

27

e FSC 4 Use two vertical spaces to separate class declarationgtium definitions,
namespace enclosure bounds, and other such major entraeéle

Justification Using two black spaces is preferable to long lines with séitte like - or
'=" or other separators and they clearly separate the eaténd are easier to maintain (see
[7, Section 31.8]).

e FSC 5 Do not indent source code inside of namespace enclosusgsaithuse commented
end bracesIndenting for namespace enclosures results in unnegessat in some cases
excessive, indentation. Instead, for example, use:

namespace MyNameSpace {

namespace MylnnerNamespace {

class SomeClass {.};

void someFunc(...) {...}

} /I namespace MylnnerNamespace

} /I namespace MyNameSpace

Above, note that two vertical blank lines are used betweeh e&the major entities (see
above item).

Justification While indentation within namespaces is helpful in sma#iraple code
fragments, it provides little help in showing namespacecstire in more realistic code. The
use of commented end braces is generally sufficient to shavespace structure and will
not result in excessively indented code. In addition, tgjbyc each file will only contain

code from one (or more nested) namespace and thereforetimgléor namespaces provides
no useful information. Not indenting for namespace enckesis also consistent with the
“ansi”, the “kr”, and the “linux” styles as defined by ArtistStyle [4].

e FSC 6 C++ class declarations should generally be laid out withbl i ¢ members coming
beforepr ot ect ed members coming befopr i vat e members and indented as shown in
Figure/ 1

Justification This ordering of sections and data members is quite commpoBdction 31.8].
Above, we show private member functions after private datafvers since private data
members are more prominent and more common in the classnmepl&tions than are
private member functions. Also, private types (where tyiecre most common) must be
listed before they are used in the declaration of the pridata members. Note that public
types used in public member functions must be listed abavat(east forward declared)
before the public member functions that use them.

e FSC 7 List short function prototypes on one line and longer prgpets on multiple lines,
indenting arguments one unBelow, guidelines for formatting short function protogg

28

class SomeClass {
Il Friends
friend void foo();
friend class SomeOtherClass;
public:
Il Public types
typedef int integral_type;
/I Public member functions
void funcl();
protected:
Il Protected member functions
void func2();
private:
Il Private types
typedef std::vector<int> int_array t;
Il Private data members

int datal ;
int_array_t arrayl ;

/I Private member functions

void func3();

Figure 1. Example of suggested layout of a C++ class declaration com-
plete with ordering of sections, indentation, and line spgc

29

and long prototypes are given. These guidelines seek taipeofilinction prototypes that are
fairly tight (i.e. not too much white-space explosion), esbust to modifications, and keep
code inside of the 80th character column. This indentatiple €an (and should) also be
applied to function definitions and function calls.

— List short function prototypes on one line if possitf®r example,

ReturnType someFunction(int arg = 0);

or

ReturnType someFunction(int arg=0);

or some other style for white-space within ’(...)" but theeopg ’(' should come
directly after the function name in all cases.

— For longer prototypes, indent arguments on continuatioesi one unitFunction
prototypes that can not approximately fit on a single linénmfirst 80 character
columns should have the function arguments listed stadimthe second line with one
unit of indentation (e.g. two spaces) from the function mettype and function name
line. For example, several different valid formats for agenfunction prototype are:

ReturnType someFunction(
int argl,
bool arg2,
const ArrayView<double> &arg3,
const std:string &argd = ™

);
or
ReturnType someFunction(

int argl, bool arg2, const ArrayView<double> &arg3,
const std:string &argd = "

);
or
ReturnType someFunction(
int argl, bool arg2, const ArrayView<double> &arg3,
const std:string &argd = ");

or

ReturnType someFunction(int argl, bool arg2,
const ArrayView<double> &arg3, const std:string &argd = " ")

30

As shown above, the function arguments can be listed sebaat different lines, or

in groups on sets of lines. The arguments can begin on the baees the type +
function name line or can start on the next line. The endingmhesis ')’ can appear
on the same line as the last line of arguments or can appe# afothe last line. Other
formats are possible also and can be appropriate in diffsitrations.

Justification See [7, Section 31.1].

— Return types can be listed on same line as the function nareesuttie line is too long
A function prototype’s return type should appear on the shneeas the function name
unless it is excessively long and would result in the retypet+ function name line to
extend past the 80th character column. When the return tyfpaction name is too
long, then it can be listed on separate lines with no indentetample, as:

Teuchos::RCP<ReturnType>
someVeryLongAndVerylmportantFunction(
int argl, bool arg2, const ArrayView<double> &arg3,
const std::string &argd = "

);

However, listing the function return type on a separate énen in cases of shorter
prototypes is also okay.

e FSC 8 Order the definitions of C++ entities the same as the ordehefdeclarations of
those entitiesFor example, one should order the definitions of a set of negrumctions the
same as the ordering of the declarations in the class definililaintaining the ordering of
definitions and declarations makes the code more readabblmare maintainable. For
example, if the function definitions are ordered the saméeasléclarations, it can be easy to
spot that a function definition is missing (i.e. which couttlthe cause of the link error that
you are seeing).

e FSC 9 Use “modified K&R” or “ANSI” style for the placement of braces@indentation
of control structuresTwo basic styles of brace placement and indentation inrobnt
structures are recommend here. The first general style isdification of the K&R style[4]
where the brace comes immediately after the control staieprethe same line shown as:

/I Modified K&R Style (recommended)
if(someCondition) {

}

else {
}
Note that the pure K&R style (for example, as defined by AdiStyle [4]) shown as:

/I Pure K&R Style (*NOT* recommended)
if(someCondition) {

} else {
=

31

is not recommended. Even through pure K&R style meets McElgsistrict pictorial
definition of “emulation of pure block style” (i.e. the egalent to pure block format such as
in Visual Basic) which he says is good, he actually recomraéhe above modified K&R
style (as do we since we feel it is more readable).

The second general style that is recommended is the “AN$IE[4] where the opening
brace begins flush on the next line from the control statersleoivn as:

/I ANSI Style (recommended)
if(someCondition)

Both the modified K&R and the ANSI styles help to avoid righftdiThe modified K&R
style creates tighter code vertically and seems to be pesfdry many communities and
authors but variations of the ANSI style are also very comnmidote that the ANSI style
seems to have a distinct advantage in cases where the cstatiginent is continued over
multiple lines. For example, the modified K&R style with linentinuations looks like:

/I Modified K&R Style with line continuations (*NOT* recomm ended)
if(someLongCondition &&

anotherVeryLongCondition &&

theLongestConditionThatWillFitOnOneLine) {

Il Statements

and it is hard to argue that this shows the logical structfi@mde. One could argue that the
ANSI style which looks like:

/I ANSI Style with line continuations (recommended)
if(someLongCondition &&
anotherVeryLongCondition &&
theLongestConditionThatWillFitOnOneLine)

{

/I Statements

better shows the logical structure of the code in clearlyassting the control structure logic
from the inner block of code.

Note that while the modified K&R style meets McConnell’'s kieg of “showing the logical
structure of code” where he refers to it as “emulating puaekl format that he cites the
ANSI styles as violating this principle [7, Section 31.1Jowever, it is somewhat subjective

32

what styles “show the logical structure” and McConnell hefhseems to contradict himself
at times (see the formatting of if/else statements below).

When choosing between one of these styles, try to be consatéeast within a single file.
However, for control statements that extend over a singks Iprefer the “ANSI” style.

Below, the application of the modified K&R style and the AN8las are shown in the
context of several different types of C++ loop and contralstures.

— Formatting if/else if/else statement#/hen applied to if statements, the two
recommended styles are:

/I Modified K&R Style (recommended)
if(someCondition) {

}

else if(someOtherCondition) {

}

else {

}

and:

Il ANSI Style (recommended)
if(someCondition)

{

else if(someOtherCondition)

— Formatting switch/case statemenihe two recommended formats for switch/case
statements are:

/I Modified K&R Style (recommended)
switch(someEnumValue) {
case ENUM_VALUEL:

break;
case ENUM_VALUEZ2:
break;
default:
TEST _FOR_EXCEPT("Should never get there!");

33

and

/I ANSI Style (recommended)
switch(someEnumValue)

{
case ENUM_VALUEL:

break;
case ENUM_VALUEZ2:

break;
default:
TEST_FOR_EXCEPT("Should never get there!");

As shown above, every switch structure should hagtefault case that throws an
exception (see “use the default clause to detect errors7,iS¢ction 15.1]).

Also, if needed, the case blocks can be wrapped in braces as:

/I Modified K&R Style (recommended)
switch(someEnumValue) {
case ENUM_VALUEL: {

break;
}
case ENUM_VALUE2: {

break;
}
default: {
TEST_FOR_EXCEPT("Should never get there!");
}
}

and

/I ANSI Style (recommended)
switch(someEnumValue)

{
case ENUM_VALUEL:

{

break;
}
case ENUM_VALUEZ2:

{

break;
}

default:

{
TEST_FOR_EXCEPT("Should never get there!");

}

34

— Formatting for and while loopsThe two recommended styles for formatting for loops
are:

/I Modified K&R Style (recommended)
for (inti = 0;i< size; ++i) {

}

and:

/I ANSI Style (recommended)
for (inti=0;i< size; ++)

{
-

Note that line continuations are often needed for a for lamp#rol structure,
especially if long type names or variable names are usedhesetcases, the ANSI
style is more highly recommended as:

/I ANSI Style (recommended)

for (
std::vector<SomeVeryLongClassName>::const_iterator i tr = longVarName.begin();
itr 1= someLongVariableName.end();
+Htr)

{
&

Similarly, while loops should be formatted as:

/I Modified K&R Style (recommended)
while (someCondition) {

}

or:

/I ANSI Style (recommended)
while (someCondition)

{
-

35

7 Doxygen documentation guidelines

In this section, a set of reasonable guidelines are statadriting Doxygen (and plain old)
documentation for classes, functions, etc. that makesgtbeification clear but is not too verbose
or hard to maintain. While other types of higher-level doemtation are also needed such as
design documents and tutorials, guidelines for these dyipess of higher-level documentation are
not covered here.

7.1 General principles for function and class level documeation (DOXP)

e DOXP 1: The Level of documentation should vary depending on theipesmoe and/or the
role of the software entity or collectiommportant interfaces or widely disseminated
concrete classes or functions require an appropriate &hymlecise documentation.
Concrete implementations that are less widely dissentnede provide less (or none in
some cases) Doxygen documentation if the implementatide @self is sufficiently easy to
understand. However, major parts of an implementation Ishiave at least some plain old
(i.e. non-Doxygen) documentation to describe the basieghaft is going on.

e DOXP 2: Important abstract interfaces must be fully specified irhejent of any single
concrete implementationin the case of important abstract interfaces, the full gjpation of
behavior for the compliant objects (i.e. invariants, pragiions, post-conditions) must be
clearly stated [10, Item 69]. In some cases, this must be domgpletely within the
Doxygen documentation for the interface. In other casem@radard unit testing code can be
used to help specify the behavior of the interface. In famtgiled and verified unit testing
code may be superior to standard Doxygen documentatioe gican not be ignored and
cannot become invalid. On the other hand, it may be diffiartréaders to wade through
unit testing code to find the specification of behavior andefoge both Doxygen
documentation and unit testing code should be used to prdkiel fullest benefit. Also,
Doxygen documentation can automatically include bits aadgs of compiled and tested
code using thedontinclude and related Doxygen commands.

e DOXP 3: Behavior of "user level” interfaces must be completely sfied by the Doxygen
documentation and/or other higher-level documentatibhnis item is an amendment to the
above item as a special case for “user” interfaces. A "useuldbe someone that simply
writes client code to the interface or one that provides enpntations of the interface or
both. User’s should not be expected to study unit testing ¢odigure out the preconditions
and/or post-conditions for a function call.

e DOXP 4: Wrong documentation is (almost) worse than no documemtatiall:
Documentation must be maintained as code is changed areddreexcessive or
unnecessary documentation that is not rigorously maiathdegrades the overall quality of
code. However, documentation with small errors is gengtadkter than no documentation
at all.

e DOXP 5: The same documentation should not be repeated in more treplace if
possible We should strive for a single source for documentation foeatity and not repeat
the same documentation over and over again. This is criticaisure that the
documentation can be successfully maintained.

36

e DOXP 6: The documentation should maintain itself as much as pesaildl be testable as
much as possibieAny significant fragments of code that are shown in the
Doxygen-generated HTML documentation should come frompitea and tested code.
This can be accomplished by using tdentinclude or related Doxygen command to read
in code fragments automatically. In this way, the compiled aur test suite can be used to
help verify the code fragments in our Doxygen documentation

7.2 Specific Doxygen documentation principles (DOX)

Now that some of the general goals for our Doxygen documientétave been presented, more
detailed guidelines are given below:

e DOX 1: Write Doxygen documentation directly in header files withudnented entities
Writing Doxygen documentation comments directly attacteetihe classes, functions and
other entities helps make the documentation as tightlyttiéde code as possible (see “Keep
comments close to the code they describe” in [7, Section)8Zkis has the unfortunate
side-effect of requiring complete recompilations whemelecumentation is modified but
the overall benefits are usually worth the disadvantagese that the Doxygen
documentation can be stripped out of Doxygen-generatedrHinked versions of the code,
leaving clean C++ code without the clutter of detailed doentation. Therefore, developers
should browse Doxygen-generated source code instead sbtliee code directly when
looking at the code and performing code reviews.

e DOX 2: Use a centralized set of definitions for common argumentsigies possibleUse
clear and consistent naming of arguments in multiple femgti(within the same class and
across as many classes and functions as makes sense) aide proentralized definition of
these arguments if possible to avoid repeating detailedriggions in each individual
function’s documentation. This helps to avoid duplicatewdoentation that is likely not to
be maintained correctly. In the case of classes, this meanglmng some common
definitions in the main “detailed” documentation sectiontfee class. In the case of
nonmember functions, this might involve a common Doxygesugror module (i.e. using
the \defgroup command) for the set of functions. In the case of collectimiisonmember
functions, it may be difficult to expect readers to find the owon definitions, but links to
the common documentation are possible using a variety abappes.

e DOX 3: Provide typical pre- and post-conditions along with the dimentation for common
arguments whenever possiblor common arguments that are shared among many
functions, define the most common preconditions for themdardral place and avoid
listing them on a function-by-function basis unless thegrae for an individual function.
For a C++ class, place descriptions for these common argisnrethe main class
documentation under‘section named “Common Function Arguments and
Pre/Post-Conditions”. Only include preconditions fordgb@rguments in specific function
documentation sections if it is different from the most coompreconditions.

e DOX 4: Add a\br i ef description for every entity that should be seen by the:uBee
\brief field is used to provide the short one-line documentatiangthat is included in the
function summary section of classes, groups, namespacel\an if no text documentation
is needed/wanted, add an empty

37

[\orief . */
void someFunction();

comment so that Doxygen will include the class, functionpthier entity in the HTML
documentation. Note that this is important when the Doxyganfiguration option
EXTRACTALL is set toNQ

DOX 5: Add a\par amfield for all of the arguments or none of the the arguments in a
function; do not define partialpar amfield lists All arguments should be listed iyparam
fields with at least the [in], [out], or [in/out] specificatie and these should have at least a
very short description. Or, if the function arguments aesacland trivial (and/or have already
been defined in the common documentation section), theparam fields for any of the
arguments should be included at all. If any of the argumenégsfunction’s documentation
are listed in\param fields then all arguments should be listed param fields.

DOX 6: Only add a\r et ur ns field if necessary and so refer to the return object as
returnVal : Don't add a\returns description of the return value if it is already clearly
specified in the\brief description of the function. However, if the nature of theura value
is at all complex, then include\aeturns field to describe it. When referring to the return
object, refer to it aseturnVal = . By consistently using the identifiegturnval for the
return value, user’s will immediately know what this is nefieg to.

DOX 7: Prefer specifying post-conditions for output argumentthair \par amfield;
otherwise specify their post-conditions in the 'Post-dtiads’ list: The post-conditions for
output arguments can be listed directly in t{fparam field for the argument if they only
involve just that argument in a fairly simple way. Otherwigehe post-conditions are more
complex or involve multiple arguments in order to specifigrt they can be listed in the
Post-conditions list. It may be difficult to objectively detnine the best place to list the
post-conditions for an output argument.

DOX 8: Order the documentation fields in function documentatiohbas ef , \par am
Preconditions, Post-condition§r et ur ns, then detailed documentation; omitting those
that do not apply A consistent ordering of sections of documentation forracfion makes it
easier for readers to find what they are looking for.

DOX 9: If possible, try to us&r el at es to associate nonmember functions with a single
class If a nonmember function is most closely related to a sintgss; then use the

\relates field to cause the documentation for the function to be listétl the classes
documentation. This makes it easier for readers to find cenyghving that they can do with a
class object (or set of class objects) just by looking at glsif TML page and a single
summary list of functions (which includes member and nonim&mnelated functions).

DOX 10: Provide detailed documentation for only the initial deetaon of a virtual
function Only provide detailed documentation of the initial deataon of a virtual function
in the class where it is first defined @gual . In general, documentation should not be
included for the overrides of virtual functions in deriveldsses. Doxygen automatically
puts in a link to the original virtual function in the basesdaso readers are just one click
away for seeing the detailed documentation. Always add grtyem

[** \brief . */
void someFunction();

38

comment for every class and every function that should heded in the HTML
documentation but where no text documentation is wante¢eded.

e DOX 11: Aggregate the overrides of virtual functions into groups@ding their base
class For example, the overrides of the virtual functions for the
Teuchos::ParameterListAcceptor interface would look like:

class SomeClass : public Teuchos::ParameterListAcceptor {
public:

/** \name Overriden from Teuchos::ParameterListAccpetor */

@y

¥ \brief . ¥/
void setParameterList(
Teuchos::RCP<Teuchos::ParameterList> const& paramList)i
¥ \brief . */
Teuchos::RCP<Teuchos::ParameterList> getParameterLis t();
¥ \brief . */
Teuchos::RCP<Teuchos::ParameterList> unsetParameterL ist();
** \brief . */
Teuchos::RCP<const Teuchos::ParameterList> getParamet erList() const;
** \brief . */
Teuchos::RCP<const Teuchos:;ParameterList> getValidPa rameters() const;

i@}

e DOX 12: Example source code used in Doxygen-generated and othas fofr
documentation should be extracted automatically from ¢beeis compiled and tested
nightly: Any significant fragment of example code that is shown in {iypn HTML
documentation or a latex document needs to come from codhaild tested code that can be
updated automatically. These C++ code fragments can betiselg inserted automatically
into Doxygen documentation using theontinclude ~ Doxygen command.

e DOX 13: Sample output should be generated automatically from deahpind tested code
Sample output included in Doxygen documentation shoulddneigated automatically by
the test harness code and should be written to files that elredied in the source directory.
The sample output in these files can then be inserted into tkvgden HTML
documentation automatically using theerbinclude = Doxygen command. Similar
approaches can also be used for latex documentation.

39

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]
[9]

[10]

References

R. A. Bartlett. Teuchos memory management classes for &tcomprehensive strategy for
safe and efficient memory management in c++ for high perfocaaomputing. Technical
report SAND10-xxx, Sandia National Laboratories, Albuaue, New Mexico 87185 and
Livermore, California 94550, 2010.

Kent Beck. Extreme Programming Explained: Embrace Changddison-Wesley
Professional, 2000.

Kent Beck and Cynthia Andre€xtreme Programming Explained: Embrace Change (2nd
Edition). Addison-Wesley Professional, 2004.

T. Davidson and J. Pattee. Artistic style 1.2tp://astyle.sourceforge.net

Lockheed Martin. Joint strike fighter air vehicle c++ @ag standards for the system
development and demonstration program. Technical reREtL200001 Rev C, Lockheed
Martin Corporation, 2005.

R. Martin. Agile Software Development (Principles, Patterns, andcBecas) Prentice Hall,
2003.

S. McConnell.Code Complete: Second Editioklicrosoft Press, 2004.
S. Meyers.Effective C++: Third Edition Addison Wesley, 2005.

B. Stroustrup.The C++ Programming Language, special editiohddison-Wesley, New
York, 1997.

H. Sutter and A. AlexandresciC++ Coding Standards: 101 Rules, Guidelines and Best
Practices Addison Wesley, 2005.

40

A Summary of guidelines

NC (Naming conventions)

NC 1: Capitalize C++ class and struct names 8sneCl ass.
NC 2: Capitalize C++ namespace names @gneNaneSpace.

NC 3: C++ enum type names should begin wilas ESonme Enumand enum values should
use all caps and scope contextS@VE ENUM VAL UE.

NC 4: C++ object instance identifier names should begin with a Ioease letter as
sonebj ect.

NC 5: C++ class data member names should begin with a lower-caser lend end with an
underscore asoneDat aMenber _

NC 6: C++ function names should begin with a lower-case letter as
sonmeFunction(...).

NC 7: Name C++ pure abstract base clas$isobBase, default implementation base
classeBl obDef aul t Base, and default concrete implementation classes
Def aul t TypeABI ob.

NC 8: Prefer to name const and non-const access functiogea®art () and
get Nonconst Part (), respectively

NOSF (Naming and organization of source files)

NOSF 1 Use file extension names hpp (C++ header),*. cpp (C++ source),*. h (C
header), and-. ¢ (C source)

NOSF 2 Include Only one major C++ class with supporting code per theaand source
file with name(sNanmeSpaceAl nner Nanespace_SonmeC ass. [hpp, cpp] .

NOSF 3 Use internal include guards in all header files

NOSF 4 Partition template code into the filés | eNanme_decl . hpp,
Fi | eNane_ def . hpp, Fi | eNare. hpp, andFi | eNane. cpp to allow for both implicit
and explicit instantiation and handling of circular typefeeences

GCG (General coding guidelines)

Error handling

— GCG 1: UseTEST_FOREXCEPTI O\(. . .), TEUCHOSASSERT(. . .) and
related macros for reporting all errors, even developergramming errors

e Memory management

41

— GCG 2 Avoid the use of raw C++ pointers in all but the lowest-levetie
— GCG 3 Usest d: : stri nginstead ofchar = or const char *

— GCG 4 UseTeuchos: : Pt r as function arguments in the place of raw C++
pointers to single objects where no persisting associatiiats

— GCG 5 UseTeuchos: : RCPfor memory management of single dynamically
allocated objects and for handling persisting associaion

— GCG 6: Use non-member constructors for all reference-type casséorce dynamic
allocation returning strong owningeuchos: : RCP objects

— GCG 7: Specify “generalized view” semantics for all views of abstrobjects

— GCG 8 UseTeuchos: : ArrayVi ewas function arguments in the place of pointers
into raw arrays or other container classes where no pensgsssociation exists and
the array does not need to be resized

— GCG 9 UseTeuchos: : Array in place ofst d: : vect or as a contiguous general
purpose data container

— GCG 10 UseTeuchos: : Ar r ayRCPfor memory management of dynamically
allocated objects stored in contiguous arrays of data amg#rsisting associations
involving contiguous arrays

— GCG 11 Always returnPt r , RCP, Ar r ayVi ew, andAr r ay RCP smart pointer
objects by value, never by reference

— GCG 12 Only return a raw C++ reference from a function for non-pesting
associaitons and use the reference and discard it in the Same statement

— GCG 13 Return onlyPt r andAr r ay Vi ewobjects by value to establish
semi-persisting associations, never a raw C++ referencbdased as a
semi-persisting association

— GCG 14 When raw C++ pointers must be exposed (i.e., due to intanfaeiith
non-compliant code), minimize the amount of code expostx taw pointer

e Object Control

— GCG 15 Accept user options at runtime througfeuchos: : Par anet er Li st
object by deriving from th&euchos: : Par anet er Li st Accept or interface

— GCG 16 Fully validate all parameters and sublists in accepted
Teuchos: : Par anet er Li st objects usingval i dat ePamat ers(...) and
other means

e Object Introspection

— GCG 17 Always send output to some genesald: : ost r eamobject; Never send
output directly tost d: : cout or st d: : cerr; Never print output with
print(...)orprintf(...).

x Prefer to print output through &euchos: : FancyOSt r eamobject instead of
through a barest d: : ost r eamobject to more easily produce indented
formatted output

«x Derive fromTeuchos: : Descri babl e and implement the functions
descri ption() anddescri be() to allow clients to print the current state
of an object

42

x Derive fromTeuchos: : Ver boseObj ect and print to
*t hi s- >get OSt r ean() to give information about what an object is doing

x As a last resort, always prefer printing to
*Teuchos: : Ver boseObj ect Base: : get Def aul t OSt r eam() instead of
std::cout orstd::cerr.

e Miscellaneous coding guidelines

— GCG 18 Prefer to explicitly define template arguments in a templatetion call to
avoid protability problems and enable implicit covnersarf input arguments

— GCG 19 Use the template functioheuchos: : as<T_t o>(T_f rom for all
conversion of data types that may result in loss of precisioim an incorrect
conversion

— GCG 20 Use namespace enclosure for the definition of C++ class membenbers

— GCG 21 Use explicit namespace qualification for the definition dhahmember
C++ functions

— GCG 22 For general functions, prefer to list function argumentshe order of input,
input/output, output, and finally optional arguments witfallt values

— GCG 23 For non-member object functions, list the object as the dirguiment passed
in as a const reference or non-const reference

— GCG 24 Preferenuns tobool s as formal function arguments when conversion
mistakes are likely

— GCG 25 Avoid overloading virtual functions

— GCG 26 Avoid overloading functions on different smart pointereye.g. RCP,
Ptr, etc.)

— GCG 27 Include only standard C++ headersc X>, not standard C headersX. h>,
and avoid allusi ng nanespace st d directives

— GCG 28 Break up templated code into four filBeneCl ass_decl . hpp,
SonmeCl ass_def . hpp, SoneCl ass. hpp,andSonmeCl ass. cpp to support both
implicit and explicit instantiation, minimize recompilath, and avoid problems in
mutually dependent (i.e. circular) code

FSCP(General principles for formatting of source code)

e FSCP I Formatting should accurately and consistently show théckdgstructure of the
code

e FSCP 2 Formatting should improve the readability of the code forsinmeople

e FSCP 3 Formatted code should retain its formatting well when medifiespecially for
those modifications performed by automated tools

e FSCP 4 Formatting style should follow the most common idiom unteesof the above
principles are violated

FSC (Specific source code formatting principles)

43

e FSC 1 The formatting style in any single file or group of closehated files should be the
same

e FSC 2 Try to keep all text within the first 80 character columns
e FSC 3 Indent with spaces and not tabs (two spaces by default)

e FSC 4 Use two vertical spaces to separate class declarationstifom definitions,
namespace enclosure bounds, and other such major entraeéle

e FSC 5 Do not indent source code inside of namespace enclosustsaithuse commented
end braces

e FSC 6 C++ class declarations should generally be laid out withbl i ¢ members coming
beforepr ot ect ed members coming befopr i vat e members and indented as shown in
Figure/ 1

e FSC 7 List short function prototypes on one line and longer prgpets on multiple lines,
indenting arguments one unit

— List short function prototypes on one line if possible
— For longer prototypes, indent arguments on continuatioresi one unit
— Return types can be listed on same line as the function narmeesittie line is too long

e FSC 8 Order the definitions of C++ entities the same as the ordehefdeclarations of
those entities

e FSC 9 Use “modified K&R” or “ANSI” style for the placement of braces@indentation
of control structures

DOXP (Goals for function and class level documentation)

e DOXP 1: The Level of documentation should vary depending on theipesmoe and/or the
role of the software entity or collection

e DOXP 2: Important abstract interfaces must be fully specified irghglent of any single
concrete implementation

e DOXP 3: Behavior of "user level” interfaces must be completely sfied by the Doxygen
documentation and/or other higher-level documentation

e DOXP 4: Wrong documentation is (almost) worse than no documemtatiall.

e DOXP 5: The same documentation should not be repeated in more treaplace if
possible

e DOXP 6: The documentation should maintain itself as much as p@saildl be testable as
much as possible

DOX (General Doxygen documentation principles)

44

DOX 1: Write Doxygen documentation directly in header files witbudoented entities
DOX 2: Use a centralized set of definitions for common argumentsexer possible

DOX 3: Provide typical pre- and post-conditions along with the wlmentation for common
arguments whenever possible

DOX 4: Add a\bri ef description for every entity that should be seen by the.user

DOX 5: Add a\par amfield for all of the arguments or none of the the arguments in a
function; do not define partia{par amfield lists

DOX 6: Only add a\r et ur ns field if necessary and so refer to the return object as
returnVval .

DOX 7: Prefer specifying post-conditions for output argumentthiir \par amfield;
otherwise specify their post-conditions in the 'Post-dtads’ list.

DOX 8: Order the documentation fields in function documentatiohkas ef , \par am
Preconditions, Post-condition§r et ur ns, then detailed documentation; omitting those
that do not apply

DOX 9: If possible, try to usa&r el at es to associate nonmember functions with a single
class

DOX 10: Provide detailed documentation for only the initial deelaion of a virtual
function

DOX 11: Aggregate the overrides of virtual functions into groupsa@ding their base class

DOX 12: Example source code used in Doxygen-generated and othas fof
documentation should be extracted automatically from ¢beeis compiled and tested
nightly.

DOX 13: Sample output should be generated automatically from dechpind tested code

45

B Summary of “C++ Coding Standards” (CPPCS) with amendments

Below, the 101 items in “C++ Coding Standards” by Sutter atekAndrescu [10] are listed along
with items that are amended or invalidated in the Thyra apdjnidelines. General amendments
that apply to all items are:

e Replacerl:shared _ptr with Teuchos::RCP
e Replacestd::vector with Teuchos::Array

e Replaceassert(someTest) with TEUCHOSASSERT(someTest)

Organizational and Policy Issues:

Item O : Don't sweat the small stuff. (Or: Know what not to standaed)
[Amended, see Section|6 and Appendix E]

Iltem 1 : Compile cleanly at high warning levels
Item 2 : Use an automated build system.

Item 3 : Use a version control system.

Item 4 : Invest in code reviews

Design Style:

Item 5 : Give one entity one cohesive responsibility.

Item 6 : Correctness, simplicity, and clarity come first.

Item 7 : Know when and how to code for scalability.

Item 8 : Don'’t optimize prematurely.

Item 9 : Don'’t pessimize prematurely.

Item 10 : Minimize global and shared data.

Item 11 : Hide information.

Item 12 : Know when and how to code for concurrency.

Item 13 : Ensure resources are owned by objects. Use explicit RAllsanart pointers.

Coding Style :

Item 14 : Prefer compile- and link-time errors to run-time errors.
Item 15 : Use const proactively.

Item 16 : Avoid macros.

Item 17 : Avoid magic numbers.

Item 18 : Declare variables as locally as possible.

Item 19 : Always initialize variables.

Item 20 : Avoid long functions. Avoid deep nesting.

46

Item 21
Item 22
Item 23
Item 24

. Avoid initialization dependencies across compilationtsin

: Minimize definitional dependencies. Avoid cyclic depencies.

: Make header files self-sufficient.

. Always write internal #include guards. Never write exi@r#include guards

Functions and Operators :

Item 25 : Take parameters appropriately by value, (smart) poiotereference.
[Amendedby Section 5.2]

Item 26 : Preserve natural semantics for overloaded operators.

Item 27 : Prefer the canonical forms of arithmetic and assignmeaetatprs.

Item 28 : Prefer the canonical form of ++ and —. Prefer calling thefigri®rms.

Item 29 : Consider overloading to avoid implicit type conversions.

Item 30 : Avoid overloading '&&’,’ ||, or’, (comma).

Item 31 : Don't write code that depends on the order of evaluatioruatfion arguments.

Class Design and Inheritance:

Item 32
Item 33
ltem 34
Item 35
Item 36
Item 37
Item 38
Item 39
Item 40
ltem 41
Item 42
Item 43
Item 44
Item 45
Item 46

: Be clear what kind of class you're writing.

: Prefer minimal classes to monolithic classes.

: Prefer composition to inheritance.

: Avoid inheriting from classes that were not designed to &setclasses.

: Prefer providing abstract interfaces.

: Public inheritance is substitutability. Inherit, not &use, but to be reused.

: Practice safe overriding.

: Consider making virtual functions nonpublic, and publiaé¢tions nonvirtual.
: Avoid providing implicit conversions.

: Make data members private, except in behaviorless agg®¢a-style structs).
: Don't give away your internals.

: Pimpl judiciously.

. Prefer writing nonmember nonfriend functions.

: Always provide new and delete together.

: If you provide any class-specific new, provide all of thensiard forms (plain,

in-place, and nothrow).

Construction, Destruction, and Copying :

Item 47
Item 48
ltem 49
Item 50

: Define and initialize member variables in the same order.

. Prefer initialization to assignment in constructors.

: Avoid calling virtual functions in constructors and desttors.

: Make base class destructors public and virtual, or preteahd nonvirtual.

47

Item 51 : Destructors, deallocation, and swap never fail.

Item 52 : Copy and destroy consistently.

Item 53 : Explicitly enable or disable copying.

Item 54 : Avoid slicing. Consider Clone instead of copying in basessks.

Item 55 : Prefer the canonical form of assignment.

Item 56 : Whenever it makes sense, provide a no-fail swap (and peavicbrrectly).

Namespaces and Modules

Item 57 : Keep a type and its nonmember function interface in the ssameespace.

Item 58 : Keep types and functions in separate namespaces unlgsséhgpecifically
intended to work together.

Item 59 : Don't write namespace usings in a header file or before aclutie.
[Amended, see Appendix D]

Item 60 : Avoid allocating and deallocating memory in different nutek.
[Invalidated, see Appendix D]

Item 61 : Don't define entities with linkage in a header file.

Item 62 : Don't allow exceptions to propagate across module boueslar
[Invalidated, see Appendix D]

Item 63 : Use sufficiently portable types in a module’s interface.
[Invalidated, see Appendix D]

Templates and Genericity :

Item 64 : Blend static and dynamic polymorphism judiciously.
Item 65 : Customize intentionally and explicitly.

Item 66 : Don't specialize function templates.

Item 67 : Don't write unintentionally nongeneric code.

Error Handling and Exceptions :

Item 68 : Assert liberally to document internal assumptions andiiilants
Item 69 : Establish a rational error handling policy, and followtitictly.
Item 70 : Distinguish between errors and non-errors.

Item 71 : Design and write error-safe code.

Item 72 : Prefer to use exceptions to report errors.

Item 73 : Throw by value, catch by reference.

Iltem 74 : Report, handle, and translate errors appropriately.

Item 75 : Avoid exception specifications.

STL: Containers :

Item 76 : Use vector by default. Otherwise, choose an appropriattageer.

48

Item 77
Item 78
Item 79
Item 80
Item 81
Item 82

: Use vector and string instead of arrays.

: Use vector (andtring::.c _str) to exchange data with non-C++ APls.

: Store only values and smart pointers in containers.

: Preferpush _back to other ways of expanding a sequence.

: Prefer range operations to single-element operations.

: Use the accepted idioms to really shrink capacity andyealise elements.

STL: Algorithms :

Item 83

: Use a checked STL implementation.

[Amended With GCC, configure Trilinos witfrilinos _ENABLECHECKEDSTL=ON

Item 84
Item 85
Item 86
Item 87
Item 88
Item 89

Type Safety :

Item 90
ltem 91
Item 92
Item 93
Item 94
Item 95
Item 96
Item 97
Item 98
Item 99

: Prefer algorithm calls to handwritten loops.

: Use the right STL search algorithm.

: Use the right STL sort algorithm.

: Make predicates pure functions.

. Prefer function objects over functions as algorithm anchparer arguments.
: Write function objects correctly.

: Avoid type switching; prefer polymorphism.

: Rely on types, not on representations.

: Avoid usingreinterpret ~ _cast .

: Avoid usingstatic _cast on pointers.

: Avoid casting away const.

: Don't use C-style casts.

: Don't memcpy or memcmp non-PODs.

: Don’t use unions to reinterpret representation.

: Don'’t use varargs (ellipsis).

: Don't use invalid objects. Don't use unsafe functions.

Item 100 : Don't treat arrays polymorphically.

49

C Summary of Teuchos memory management classes and idioms

Basic Teuchos smart pointer types

Non-persisting (and semi-persisting) Persisting
Associations Associations
single objects Ptr<T> RCP<T>
contiguous arrays ArrayView<T> ArrayRCP<T>

Other Teuchos array container classes
Array class | Specific use case
Array<T> Contiguous dynamically sizable, expandable, and coriittacirrays
Tuple<T,N> | Contiguous statically sized (with si2& arrays

Equivalencies for const protection for raw pointers and Tewhos smart pointers types

| Description | Raw pointer | Smart pointer
Basic declaration (non-const obj)| typedef A* ptr A RCP<A>
Basic declaration (const obj) typedef const A* ptr _const _A | RCP<const A>
non-const pointer, non-const objecptr _A RCP<A>
const pointer, non-const object | const ptr _A const RCP<A>
non-const pointer, const object | ptr _const _A RCP<const A>
const pointer, const object const ptr _const _A const RCP<const A>

Summary of operations supported by the basic Teuchos smartginter types
Operation | Ptr<T> | RCP<T>| ArrayView<T> | ArrayRCP<T> |
Raw pointer-like functionality
Implicit conv derived to base
Implicit conv non-const to const
Dereferenceperator*()
Member accessperator->()
operator[](s) X
operatorst+, -- , +=(s) , -=(S)
Other functionality
Reference counting machinery X
Iterators: begin(), end() X X
ArrayView subviews - - X X

X | X[X| X
X X[X | X

XX [X[X]|X

x

Basic implicit and explicit supported conversions for Teutios smart pointer types

| Operation | Ptr<T> | RCP<T>| ArrayView<T> | ArrayRCP<T> |
Implicit conv derived to base X X
Implicit conv non-const to const X X X X
const _cast X X X X
static _cast X X
dynamic _cast X X
reinterpret _cast X X

50

Class Data Members for Value-Type Objects

| Data member purpose | Data member declaration |
non-shared, single, const object const S s _;
non-shared, single, non-const object S s
non-shared array of non-const objects Array<S> as _;
shared array of non-const objects RCP<Array<S> > as _;

non-shared statically sized array of non-const objeciaple<S,N> as _;

shared statically sized array of non-const objects | RCP<Tuple<S,N> > as _;
shared fixed-sized array of const objects ArrayRCP<const S> as _;
shared fixed-sized array of non-const objects ArrayRCP<S> as

Class Data Members for Reference-Type Objects

Data member purpose \ Data member declaration
non-shared or shared, single, const object RCP<const A> a _;
non-shared or shared, single, non-const object | RCP<A> a;

non-shared array of shared const objects Array<RCP<const A> > aa

non-shared array of shared non-const objects Array<RCP<A> > aa _;

shared fixed-sized array of shared const objects | ArrayRCP<RCP<const A> > aa _;

“...” (const ptr) ArrayRCP<const RCP<const A> > aa _;
shared fixed-sized array of shared non-const obje@sayRCP<RCP<const A> > aa _;
“...” (const ptr) ArrayRCP<const RCP<const A> > aa _;

51

Passing IN Non-Persisting Associations to Value Objects &unc Args

Argument Purpose \ Formal Argument Declaration \

single, non-changeable object (required} s or const S's or const S &s

single, non-changeable object (optionalyonst Ptr<const S> &s

single, changeable object (required) | const Ptr<S> &s or S &s

single, changeable object (optional) | const Ptr<S> &s

array of non-changeable objects const ArrayView<const S> &as

array of changeable objects const ArrayView<S> &as

Passing IN Persisting Associations to Value Objects as Fuags
| Argument Purpose | Formal Argument Declaration |
array of non-changeable objectsonst ArrayRCP<const S> &as
array of changeable objects | const ArrayRCP<S> &ss

Passing OUT Persisting Associations for Value Objects as g Args
| Argument Purpose | Formal Argument Declaration |
array of non-changeable objedtsonst Ptr<ArrayRCP<const S> > &as
array of changeable objects | const Pir<ArrayRCP<S> > &as

Passing OUT Semi-Persisting Associations for Value Objestas Func Args
Argument Purpose Formal Argument Declaration

array of non-changeable objegtsonst Ptr<ArrayView<const S> > &as

array of changeable objects | const Ptr<ArrayView<S> > &as

52

Passing IN Non-Persisting Associations to Reference (or Wee) Objects as Func Args

| Argument Purpose

\ Formal Argument Declaration

single, non-changeable object (require

djonst A &a

single, non-changeable object (option

algonst Ptr<const A> &a

single, changeable object (required)

const Ptr<A> &a or A &a

single, changeable object (optional)

const Ptr<A> &a

array of non-changeable objects

const ArrayView<const Ptr<const A> > &aa

array of changeable objects

const ArrayView<const Ptr<A> > &aa

Passing IN Persisting Associations to Reference (or Valu®bjects as Func Args

| Argument Purpose

\ Formal Argument Declaration

single, non-changeable object

const RCP<const A> &a

single, changeable object

const RCP<A> &a

array of non-changeable objegtsonst ArrayView<const RCP<const A> > &aa

array of changeable objects

const ArrayView<const RCP<A> > &aa

Passing OUT Persisting Associations for Reference (or Vad) Objects as Func Args

| Argument Purpose

\ Formal Argument Declaration

single, non-changeable object

const Ptr<RCP<const A> > &a

single, changeable object

const Pir<RCP<A> > &a

array of non-changeable objectzonst ArrayView<RCP<const A> > &aa

array of changeable objects

const ArrayView<RCP<A> > &aa

Passing OUT Semi-Persisting Associations for Referencer(dalue) Objects as Func Args

| Argument Purpose | Forma

| Argument Declaration

single, non-changeable object

const Ptr<Ptr<const A> > &a

single, changeable object

const Ptr<Ptr<A> > &a

array of non-changeable objectsonst ArrayView<Ptr<const A> > &aa

array of changeable objects

const ArrayView<Ptr<A> > &aa

53

Returning Non-Persisting Associations to Value Objects
Purpose | Return Type Declaratiot

Single copied object (return by value) | S

Single non-changeable object (requiredjonst S&

Single non-changeable object (optionalPtr<const S>
Single changeable object (required) | S&

Single changeable object (optional) | Ptr<S>

Array of non-changeable objects ArrayView<const S>
Array of changeable objects ArrayView<S>

Returning Persisting Associations to Value Objects
| Purpose | Return Type Declaratior)
Array of non-changeable objectsArrayRCP<const S>
Array of changeable objects ArrayRCP<S>

Returning Semi-Persisting Assaociations to Value Objects
| Purpose | Return Type Declaration
Array of non-changeable objecisArrayView<const S>
Array of changeable objects ArrayView<S>

Returning Non-Persisting Associations to Reference (or \fae) Objects
Purpose | Return Type Declaration |

Single cloned object RCP<A>

Single non-changeable object (requiredjonst A&

Single non-changeable object (optionalpPtr<const A>

Single changeable object (required) | A&

Single changeable object (optional) | Ptr<A>

Array of non-changeable objects ArrayView<const Ptr<const A> >
Array of changeable objects ArrayView<const Ptr<A> >

Returning Persisting Associations to Reference (or Value)bjects

| Purpose | Return Type Declaration |
Single non-changeable object | RCP<const A>
Single changeable object RCP<A>

Array of non-changeable objectsArrayView<const RCP<const A> >
Array of changeable objects ArrayView<const RCP<A> >

Returning Semi-Persisting Associations to Reference (oralue) Objects

| Purpose | Return Type Declaration |
Single non-changeable object | Ptr<const A>
Single changeable object Ptr<A>

Array of non-changeable objectsArrayView<const Ptr<const A> >
Array of changeable objects ArrayView<const Ptr<A> >

54

Conversions of data-types for single obj

.getRawPtr ()

<Derived> to <Base>
<T> to <const T>

<Derived> to <Base>

1
<T> to <const T> 1

.getRawPtr ()

Legend

<<implicit conversion>>

>

<<explicit conversion>>

Conversions of data-types for contiguous

RCP<std::vector<T> >

v | <T> to
: <const T>

RCP<Array<T> >

L4
T S~ o
v - 9etRawPtr () STy,
[e]

1'*

~ %
— \\Qo
-~ ~

\.zeiREWptr

-

0

ects

AVOID THIS!

AVOID THIS!

arrays

~
~
~
~

|~—,°J1rray<T>

svector<T>

Legend

<<implicit view conversion>>

<<implicit copy conversion>>

<<explicit copy conversion>>

55

»] .
ArrayView<T>

A

<T> to
<const T>

Tuple<T,N>

Most Common Basic Conversions for Single Object Types

| Type To | Type From | Properties | C++ code
RCP<A> A* Ex, Ow rep(a _p) 1
RCP<A> A* Ex, NOw rep(a -pfalse) 2
RCP<A> A& Ex, NOw rcpFromRef(a)
RCP<A> A& Ex, NOw rcpFromUndefRef(a)
RCP<A> Ptr<A> Ex, NOw, DR | rcpFromPtr(a)
RCP<A> boost::shared _ptr<A> | EX, Ow, DR | rcp(a -sp)
RCP<const A> RCP<A> Im, Ow, DR | RCP<const A>(a _rcp)
RCP<Base> RCP<Derived> Im, Ow, DR | RCP<Base>(derived _rcp)
RCP<const Base> RCP<Derived> Im, Ow, DR | RCP<const Base>(derived _rcp)
boost::shared _ptr<A> | RCP<A> Ex, Ow, DR | shared _pointer(a _rcp)
A* RCP<A> Ex, NOw RCP:getRawPtr() =
A& RCP<A> Ex, NOw RCP:operatort() |4
Ptr<A> A* Ex, NOw ptr(@ -p) 2
Ptr<A> A& Ex, NOw outArga) °!
Ptr<A> RCP<A> Ex, NOw, DR | ptrFromRCP(a _rcp)
Ptr<const A> Ptr<A> Im, NOw, DR | Ptr<const A>(a _ptr)
Ptr<Base> Ptr<Derived> Im, NOw, DR | Ptr<Base>(derived _ptr)
Ptr<const Base> Ptr<Derived> Im, NOw, DR | Ptr<const Base>(derived _ptr)
A* Ptr<A> Ex, NOw Ptr::getRawPtr() El
A& Ptr<A> Ex, NOw Ptr::operator*() 14
A* A& Ex, NOw gal3
A& A* Ex, NOw *a_p 3

Types/identifiersA* a_p; A& a; Ptr<A> a _ptr ; RCP<A> arcp ;

Properties: Im = Implicit conversion, Ex = Explicit convems, Ow = Owning, NOw = Non-Owning, DR
= Dangling Reference debug-mode runtime detection [NOTIEc@nversions are shallow conversions, i.e.
copy pointers not objects]

1. Constructing an ownin§CPfrom a raw C++ pointer is strictly necessary but must be doitle great
care according to the commandments in Apperrdix

2. Constructing a non-owningCPor Ptr directly from a raw C++ pointer should never be needed iryfull
compliant code. However, when inter-operating with nompbtant code (or code in an intermediate
state of refactoring) this type of conversion will be needed

3. Exposing a raw C++ pointer and raw pointer manipulation sthaever be necessary in compliant
code but may be necessary when inter-operating with exteod (see Sectio??).

4. Exposing a raw C++ reference will be common in compliant cbdeshould only be used for non-
persisting associations.

5. See other helper constructors for passitig described in Sectiofl?.

56

Most Common Basic Conversions for Contiguous Array Types

| Type To | Type From | Properties | C++ code (or impl function)
ArrayRCP<S> S* Sh, Ex, Ow arcp(s -p,0,n) 1]
ArrayRCP<S> S* Sh, Ex, NOw arcp(s -p,0,n,false) 2
ArrayRCP<S> Array<S> Sh, Ex, NOw, DR| arcpFromArray(s _a)
ArrayRCP<S> ArrayView<S> Sh, Ex, NOw, DR| arcpFromArrayView(s _av)
ArrayRCP<S> ArrayView<S> Dp, Ex, Ow arcpClone(s _av)
ArrayRCP<S> RCP<Array<S> > Sh, Ex, Ow arcp(s -a-rcp)
ArrayRCP<const S> RCP<const Array<S> > Sh, Ex, Ow arcp(cs -a_rcp)
ArrayRCP<const S> ArrayRCP<S> Sh, Im, Ow ArrayRCP::operator ArrayRCP()
S* ArrayRCP<S> Sh, Ex, NOw ArrayRCP::getRawPtr() 3
S& ArrayRCP<S> Sh, Ex, NOw ArrayRCP::operatorf](i) 4
ArrayView<S> St Sh, Ex, NOw arrayView(s _p,n) 1
ArrayView<S> Array<S> Sh, Im, NOw, DR/| Array::operator ArrayView()
ArrayView<S> Tuple<S> Sh, Im, NOw, DR| Tuple::operator ArrayView()
ArrayView<S> std::vector<S> Sh, Im, NOw ArrayView<S>(s _v)
ArrayView<S> ArrayRCP<S> Sh, Ex, NOw, DR| ArrayRCP::operator()()

ArrayView<const S>

const Array<S>

Sh, Im, NOw, DR

Array;:operator ArrayView()

ArrayView<const S>

const Tuple<S>

Sh, Im, NOw, DR

Tuple::operator ArrayView()

ArrayView<const S> const std::vector<S> Sh, Im, NOw ArrayView(cs _v)
ArrayView<const S> ArrayRCP<const S> Sh, Ex, NOw, DR| ArrayRCP::operator ArrayView()
S* ArrayView<S> Ex, NOw ArrayView::getRawPtr() 3
S& ArrayView<S> Ex, NOw ArrayView::operator[](i) 4
Array<S> St Dp, Ex Array<S>(s _p,s _p+n)
Array<S> std::vector<S> Dp, Im Array<S>(s _v)

Array<S> ArrayView<S> Dp, Im Array<S>(s _av)

Array<S> Tuple<S,N> Dp, Im Array<S>(s _t)

Array<S> ArrayRCP<S> Dp, Ex Array<S>(s _arcp());
std::vector<S> Array<S> Dp, Ex s_a.toVector();

St Array<S> Ex, NOw Array::getRawPtr() 3

S& Array<S> Ex, NOw Array::operator(](i) 4

Types/identifiersS* s _p;
std:vector<S> s _v;

Properties: Sh = Shallow copy, Dp = Deep copy (dangling esfees not an issue), Im = Implicit conversion,

ArrayView<S> s _av; ArrayRCP<S> s _arcp ; Array<S> s _a; Tuple<SN> s _t;

Ex = Explicit conversion, Ow = Owning (dangling referencex an issue), NOw = Non-Owning, DR =
Dangling Reference debug-mode runtime detection for nenkiug

1. It should never be necessary to convert from a raw pointentovaning ArrayRCP object directly.
Instead, use the non-member construatgr<S>(n)

2. Constructing a non-owninggrayRCP or ArrayView directly from a raw C++ pointer should never be
needed in fully compliant code. However, when inter-ogagatvith non-compliant code (or code in
an intermediate state of refactoring) this type of conarsvill be needed.

3. Exposing a raw C++ pointer should never be necessary in dantgode but may be necessary when
inter-operating with external code (see Secti@h

4. Exposing a raw C++ reference will be common in compliant cbdeshould only be used for non-
persisting associations.

57

D Miscellaneous amendments to “C++ Coding Standards”

In this appendix, we provide amendments mentioned in AppeBdo some of the items in [10]
that we feel are inappropriate for our domain.

D.1 Amendments to items related to compiler/linker incompaibilities

There are three items in [10] that relate to portability peots associated with mixing and
matching code in different binary libraries compiled witifferent C++ compilers or with different
compiler options. In this context, the authors use the tarmadule” to mean a single library or a
set of libraries containing binary object code that defiles‘tnodule”.

In general, one can not assume that object code compileddgitwiore different C++ compilers
will work together since the name-mangling needed for tyafe linkage is not even specified by
the ISO C++ standard. A more typical problem is when the saongpder is used, but different
compiler and/or linker options are used. For example, soonepiers allow you to turn support for
exception handling on and off and if an exception is throwrmbg module it will not be handled
correctly by another module that has exception handlinggsturned off. A similar problem can
happen when mixing static and shared libraries, in Linuxefcaample, where RTTI is handled
differently and can result in dynamic casting failures ise&awhere it would otherwise succeed.

In our model of software deployment, we distribute sourcgecand a build process that users can
manipulate in order to set the exact compiler and linkeramgtito match what is used by other
libraries and the application code that uses the libraBezause we develop class libraries, it is
simply not realistic to isolate this type of code into libesr with small “Facade”type interfaces.

The specific items that we consider inappropriate are:

e Item 60: Avoid allocating and deallocating memory in difier modules
e Item 62: Don't allow exceptions to propagate across modaleruaries

e Item 63: Use sufficiently portable types in a module’s irstesf

All three of these items are related to the problem of mixindescreated by different compiler
and/or linker options. However, they may also be relatedit@thlanguage programming. For
example, in order to ensure that your module is the most #eisgou might create a C-compatible
interface that allows clients coding in C (and even Fortrarin/some cases) to call and be called
by your module. If mixed language programming is the issienta speciadxtern "C" interface
should be created for the module which will automaticalliis$a Items 60, 62, and 63. Note that
reference counting machinery in tREPandArrayRCP classes actually solves the problem of
calling new anddelete in different modules because the deallocator object this delete is
create and assigned in the same module whewds called.

58

D.2 Amendments for 'using’ declarations and directives

In [10, Item 59], the authors say to never put 'using’ dedlarss into header files or before
#include s and that 'using namespace SomeNamespace’ directivesideetfy safe for code in
source files after altinclude s. However, we will argue that:

e employingusing declarations to inject names of C++ classes or enums fronmamespace
into another is fairly safe (this is more lax than what is sgjgd in [10, Item 59])

e employing ausing namespace ... directive in any context is harmful and should be
avoided (this is more strict than what is suggested in [EmI569]).

However, we agree that employinging declarations for nonmember functions is dangerous and
is to be avoided because of problems related to overloadiddrewhat order overload ares
declared and used.

Are all using declarations employed in header files dangetdn [10, Item 59], the authors clearly
show that employing 'using’ declarations for nonmemberctions is dangerous because of
overloading. But what about employing 'using’ declaratidar C++ classes?

To investigate the issues involved, consider the followtmgC++ program (in the file
NamespaceClassUsinglssues.cpp):

Il
Il Header-like declarations
Ik

#include <iostream>
namespace NamespaceA {

template<class T>
class A {
public:
explicit A(const T& a) : a_(a) {}
void print(std::ostream &os) const
{ 0s << "na="<<a_<<"\n"; }
private:
T a;
Y

} Il namespace NamespaceA

/I Add a using declaration to inject 'A’ into another namespa ce
namespace NamespaceB {

using NamespaceA:A;

} /I namespace NamespaceB

59

Il Now use the A class without the namespace qualification
namespace NamespaceB {

A<double> foo(std::ostream &os, const A<int> &aa);
/I NOTE: Above, we do not need namespace qualification for ‘A

} Il namespace NamespaceB

1l
II' Implementations
1l

Il Create another A class in the global namespace. With care,
Il have any problems with this and our code should not be affec
Il presence of this class.
template<class T>
class A {
public:

explicit A(const T& a) : a (a)

{ std::cerr << "\nOh no, called ::AzA(..)\n"; exit(1); }

void print(std::ostream &os) { 0s << "\na="<<a_<<"\n"; }
private:

T a;
3

I See what happens when you define another class A in Namespa

Il conflicts with the using declaration! This should not be a
Il should be caught by the compiler!

#ifdef SHOW_DUPLICATE_CLASS A
namespace NamespaceB {

template<class T>
class A {
public:
explicit A(const T& a) : a (a)
{ std::cerr << "\nOh no, called ::A:A(.)\n" exit(1); }
void print(std::ostream &o0s) { 0s << "\na="<<a_<<"\n"; }
private:
T a;
3

} Il namespace NamespaceB

#endif // SHOW_DUPLICATE_CLASS_A

Il Define function in NamespaceB without namespace qualifi
NamespaceB::A<double>
NamespaceB::foo(std::ostream &os, const A<int> &aa)

{
A<double> ab(2.0);

60

we should not
ted by the

ceB which

llowed and

cation for class A

aa.print(std::cout);
ab.print(std::cout);

return ab;
}
/I NOTE: Above, we need explicit namespace qualification fo r the return type
Il 'NamespaceB::A<double>' since we use namespace qualifi cation to define
Il nonmember functions (see Thyra coding guidelines). With out this namespace
Il qualification, the global class "::A” would be assumed an d you would get a
Il compilation error. However, within the function, which i s in the scope of

Il NamespaceB, we don't need namespace qualifications!

1l
Il User's code. This code does not typically live in a namespa ce (or is in
/I another unrelated namespace). Here, some explicit names pace qualification
/I and using declarations will be required to avoid ambiguit ies.
1l
int main()
{
#if defined(SHOW_MISSING_USING_DECL)
/I Here, no using declaration is provided. This will result i n the global
Il class ":A’" being used below which will result in a compile r error when
Il the NamespaceB::foo(...) function is called. This is a fe ature!
#elif defined(SHOW_ERRONEOUS_USING_DIRECTIVE)
Il Here we try to just inject all of the names from NamespaceA i nto the
Il local scope. However, this will result in the names 'Names paceA:A’ and
II' ;A" being equally visible which will result in a compile r error when

Il the first unqualified 'A’ object is created below!
using namespace NamespaceA,;

#else
II' Inject the class name 'A’ into the local scope and will over ride any
II' (sloppy) names polluting the global namespace. This will cause the global

II ;A" class to be sort of hidden (which is good!).
using NamespaceA:A;

#endif
A<int> aa(b);
A<double> ab = NamespaceB::foo(std::cout,aa);
ab.print(std::cout);

return 0;

The above program defines a templated chassnamespac8lamespaceA and then does asing
NamespaceA::A to inject this class name intéamespaceB.

When the program is compiled and run, one gets:

$ g++ -ansi -pedantic -Wall -o NamespaceClassUsinglssues. exe
NamespaceClassUsinglssues.cpp

61

$./NamespaceClassUsinglssues.exe
a=5
a=2

a=2

This program has a few different ifdefs to show differentagmf errors that a compiler will detect.

1. What happens if you try to define another clAss namespac&anmespaceB?

In the case of nonmember functions, overloads of a functkhibé strange and non-intuitive
behavior when one employs 'using’ declarations. Howevégtihappens with classes?

In the above program, when one defines the m&OWDUPLICATE CLASS A when
compiling, one will get the following compile-time error:

$ g++ -ansi -pedantic -Wall -DSHOW_DUPLICATE_CLASS_A \

-0 NamespaceClassUsinglssues.exe NamespaceClassUsing| ssues.cpp
NamespaceClassUsinglssues.cpp:63: error: declaration o f ‘class

NamespaceA::A<T>" in ‘NamespaceB’ which does not enclose NamespaceA’
NamespaceClassUsinglssues.cpp:63: confused by earlier e rrors, bailing out

Above, the error message generated by g++ is not very goodt bedist the compiler will
not allow this code to compile. This is in stark contrast taaihappens when you have
overloaded member functions which [10, Item 59] complainsua.

Take-home MessageEmployingusing SomeNamespace::SomeClass declarations to
inject names from one namespace into another seems to barshtwes not suffer from the
gotchas associated witising - declarations for (overloaded) nonmember functions.

2. What happens when the user’'s code does not have an appmpsatg declaration?

While theusing NamespaceA::A declaration ifNamespaceB allows the code in
NamespaceB to avoid having to explicitly qualifiNamespaceA::A all the time, this does not
automatically mean that user code that does not liamespaceB will not have to do
something to get at the nameThe user can either do explicit qualificatiblamespace::A

or can put ausing NamespaceA::A declaration at the top of their namespace or in each
function that they have (as is done in thein() function above).

In the above program, if you define the maSidOWMISSING_USING_DECL, theusing
Namespace::A declaration will be missing imain() and this will result in the compiler
finding the globat:A class which will cause a compiler error when
NamespaceB::foo(...) gets called. Here is the error message that one gets when
compiling with this macro defined:

$ g++ -ansi -pedantic -Wall -DSHOW_MISSING_USING_DECL \
-0 NamespaceClassUsinglssues.exe NamespaceClassUsing| ssues.cpp

62

NamespaceClassUsinglssues.cpp: In function ‘int main()’

NamespaceClassUsinglssues.cpp:121: error: invalid init ialization of
reference of type 'const NamespaceA::A<int>& from expres sion of type '
A<int>’

NamespaceClassUsinglssues.cpp:80: error: in passing arg ument 2 of
NamespaceA::A<double> NamespaceB::foo(std::ostreamg&, const

NamespaceA::A<int>&)’

While the above error message generated by g++ here is rnbaaljreat either, at least the
compiler catches the mistake and at least states the tyypased.

Take-home MessageAlways employusing SomeNamespace::SomeClass to inject type
names from other namespaces that you want to use in your pagest protect your code
from others who pollute the global namespace.

. What happens when the user code employsiang nanespace NanespaceA
directive when there are conflicting names?

Since there is a global clas8 , the user can not simply employusing namespace
NamespaceA directive or the compiler will complain that it does not knawhich class to use.

In the above program, when one defines the m&&OWERRONEOUSSING_DIRECTIVE
when compiling one gets the compile error:

$ g++ -ansi -pedantic -Wall -DSHOW_ERRONEOUS USING _DIREC TIVE \
-0 NamespaceClassUsinglssues.exe NamespaceClassUsing! ssues.cpp

NamespaceClassUsinglssues.cpp: In function ‘int main()’

NamespaceClassUsinglssues.cpp:120: error: use of ‘A’ is a mbiguous

NamespaceClassUsinglssues.cpp:45: error: first declare das '
template<class T> class A’ here

NamespaceClassUsinglssues.cpp:10: error: also declared as '
template<class T> class NamespaceA::A’ here

NamespaceClassUsinglssues.cpp:120: error: parse error b efore >’ token

NamespaceClassUsinglssues.cpp:121: error: use of ‘A’ is a mbiguous

NamespaceClassUsinglssues.cpp:45: error; first declare das '
template<class T> class A’ here

NamespaceClassUsinglssues.cpp:10: error: also declared as '
template<class T> class NamespaceA::A’ here

NamespaceClassUsinglssues.cpp:121: error; parse error b efore *>" token

NamespaceClassUsinglssues.cpp:122: error; ‘ab’ undecla red (first use
this function)

NamespaceClassUsinglssues.cpp:122: error: (Each undecl ared identifier

is reported only once for each function it appears in.)

Note that this type of example goes against the advise inf@, 59] where they say that it
is safe to employsing namespace SomeNamespace directives in*.cpp source files. This
example shows that this does not protect you from otherspitiaite the global namespace.
Note that code that is written this way might compile one dag aot the next as it is fragile
and can be broken by other people that pollute the global spate.

Take-home MessageNever employusing namespace AnyNamespace as you cannot
guarantee the integrity of your code since people outsig@of namespace can cause your
code to not compile.

63

E Arguments for adopting a consistent code formatting style

While there are reasonable ways to handle different codedtiing styles within a project (e.g.
custom file styles in emacs), there are arguments for piefear more consistent code formatting
style that is used throughout a project by all developergéngroject. It is typically more difficult
to modify code than to read code that uses an unfamiliar gostiyle and therefore consistent
coding styles is more important in cases where multiple id@ers modify the same code base.

One of the more lenient opinions on coding style in the lite@comes from [10, Item 0] where
the authors state:

“Do use consistent formatting within each source file or exach project, because it’s
jarring to jump around among several styles in the same miEcede. But don't try to
enforce consistent formatting across multiple projectaaross a compy

Much stronger arguments for working toward a consistenedodmatting style within a project
are made by other individuals and organizations who reptes&ide range of views of software
development. These organizations and persons vary frogethssociated with open-source
organizations (e.g. GNU) to newer Agile methodologistg.(Extreme Programming) to large
software companies (e.g. Microsoft). As different as thesm@us people and organizations view
the nature of software (e.g. GNU vs. Microsoft) and how itiddde developed (e.g. GNU vs.
Extreme Programming), they all agree that some consistienoyding style is a good idea.

A few points are worth making before looking at opinions omatting style expressed by these
different individuals and organizations. In each of theerefces cited, the individual or
organization gives a justification for the opinions expessand it is up to the reader to weigh these
arguments on their own. Also, just because an opinion isesgad by an “expert” does not in and
of itself automatically give that opinion a lot of credené®wever, when a wide number of
different and diverse “experts” espouse the same opinf@m such a point of view should be
considered more seriously.

E.1 Statements on coding style from varied persons and/or ganizations

Here we overview some options on consistent code formastiylg from a variety of sources.

E.1.1 Open source software (the GNU project)

On one end of the spectrum is the open source software comyrthat one can think of as the
freest form of software. A GNU package is usually not everettgyed by a cohesive set of
developers but yet the official GNU Coding Standasthtes:

6The implicit assumption in this latter qualification is thaevelopers don'’t interact heavily with multiple projects
and multiple projects don’t interact much with each othed #merefore there is typically little advantage to having a
company-wide code formatting standard. However, if theesaevelopers work together on multiple projects and go
back and forth between projects frequently, it is uncleaatthe opinion of the authors would be in this case.
"http:/www.gnu.org/prep/standards/standards.html

64

“The rest of this section gives our recommendations forodspects of C formatting
style ... We don't think of these recommendations as reqmerds ... But whatever
style you use, please use it consistently, since a mixtuseytéds within one program
tends to look ugly. If you are contributing changes to antexgsprogram, please
follow the style of that program”.

While the above passage does not mandate a consistent abgimgvithin a GNU package
(because it can't, its free software), it does recommenddingostyle€’ and it asks that each project
please use a consistent coding style throughout a GNU projec

E.1.2 Agile Methods (Extreme Programming)

While the Extreme Programming and GNU movements are milag apterms of how it expects
coders to work together to create code, they both agree #lirag a consistent coding style within a
project is important.

In his popular 1999 book “Extreme Programming Explained; Kent Beck explicitly listed
“Coding Standards” as one of XP’s twelve recommended mrestiln this book, Beck states

“You couldn’t possibility ask the team to code to a commomdtad. Programmers
are deeply individualistic, and would quit rather than it curly braces somewhere
else. Unless:

e The whole of XP makes them more likely to be members of a wiptgam.

Then perhaps they could be willing to bend their style aelitBesides, without coding
standards the additional friction slows pair programming eefactoring
significantly”.

In this first book, Beck also comments on coding standardsdrcontext of “collective ownership”
of code by stating:

“You couldn’t possibly have everybody potentially chargemnything anywhere.
Folks would be breaking stuff left and right, and the costmégration would go up
dramatically. Unless:

e You integrate after a short enough time, so that chancesrdficts go down.

e You adhere to coding standards, so you don'’t get into thedext&urly Brace
Wars.

Then perhaps you could have anyone change code anywheresgstem when they
see the chance to improve it".

8The official GNU formatting style is one of the built-in stglen Emacs called the “gnu” style

65

As a result, many XP projects have insisted on requiringyeregmber of the team to code in the
same way. So much to the point that one should not be abld tshelwrote a piece of code just

in how it is formatted. As of this writing, almost every soaraf information on XP on the Internet
takes a very strong opinion on the adoption of a consistediingostyle by an XP group. The
specific details of the coding style are not important, whatiportant is that everyone on the team
helps to formulate and agrees to use the same coding style.

In his updated 2005 book “Extreme Programming Explained:o8eé Edition” [3], Kent Beck has
restructured XP and now the “Coding Standards” practice@iknger specifically listed as a
practice. Does this mean that consistent code formattingtitonger important in XP? The simple
answer is no. In her article “The New XPivhich outlines the second edition of Beck’s book and
compares it to the first edition, Michele Marchesi states:

“You must note that in the new XP we cannot find original preegi ofcoding
standardsthat is considered obvious, ... ”

And to put to rest any doubt how Beck himself feels about &tast coding styles he states in the
second edition:

“For example, people get passionate about coding stylelé/ftére are undoubtedly
better styles and worse styles, the most important styleigsthat the team chooses
to work towards a common style. ldiosyncratic coding styed the values revealed
by them, individual freedom at all costs, don’t help the teaaroceed”.

Therefore, it is clear that the flagship of the Agile prograimgrmovement, XP, clearly advocates
that a team of developers should work towards a consistetd fmymatting style.

E.1.3 Code Complete

In [7], Steve McConnell makes a strong argument that grobpsld adopt a consistent coding
standard, including reasonable guidelines for the forimgbf source code.

There are several places in his book where McConnell ssd¢hsemportance of using a consistent
formatting style in a group project:

e “The bottom line is that the details of a specific method afciring a program are much
less important than the fact that the program is structuocetistently” [7, Section 31.1].
This quote is almost an exact paraphrase of the statemeuts iméhe GNU coding standard
document and by Beck in the Extreme Programming books mediabove.

e “The importance to comprehension and memory of structuoing's environment in a
familiarly way has lead some researchers to hypothesizdapaut might harm an expert’s
ability to read a program if the layout is different from theheme the expert uses (Shell
1981, Soloway and Ehrlich 1984)” [7, Section 31.1]. This liepthat working with an
unfamiliar style might handicap expert coders more tharirtvesy and intermediate coders.

9 hitp:/lwww.agilexp.org/downloads/TheNewXP.pdf

66

“Structuring code is important for its own sake. The speabavention you follow is less
important than the fact that you follow the same conventionststently” [7, Chapter 31].

“Many aspects of layout are religious issues. Try to sepawhfective preferences from
subjective one. Use explicit criteria to help ground yowgcdissions about style preferences.”
[7, Chapter 31].

“Use conventions to spare you brain the challenge of rementparbitrary differences
between different sections of code .” [7, Section 34.1].

“The point of having coding conventions is to mainly reduoenplexity. When you
standardized decisions about formatting, loops, variablees, modeling notations, and so
on, you release mental resources that you need to focus anchallenging aspects of the
programming problem. One reason coding conventions arersmaversial is that choices
among the options have some limited aesthetic base butseat&dly arbitrary. People have
the most heated arguments over their smallest differer@@esventions are most useful
when they spare you the trouble of making and defendingraritlecisions. They are less
valuable when they impose restrictions in more meaningkas.” [7, Section 34.1].

“The motivation behind many programming practices is taumda program’s complexity,
and reducing complexity is arguably the most important keyding an effective
programmer.”[[7, Chapter 34].

“When abused, a programming convention can be a cure thatsenthan the disease. Used
thoughtfully, a convention adds valuable structure to tieetbpment environment and helps
with managing complexity and communication.” [7, Chapté}. 3

“In general, mandating a strict set of technical standamis the management position isn't
a good idea.” [7, Section 28.1].

“If someone on a project is going to define standards, havegented architect define the
standards rather than a manager ... If the architect isdedaas the projects’ thought leader,
the project team will generally follow standards set by thetison.” [7, Section 28.1].

“If your group resists adopting strict standards, consaléw alternatives: flexible
guidelines, a collection of suggestions rather than ginds| or a set of examples that
embody the best practices.” [7, Section 28.1].

“Even if your shop hasn'’t created explicit coding standardsiews provide a subtle way of
moving toward a group coding standard—decisions are madecbhgroup during reviews,
and over time group derives its own standards.” [7, Sect®d]2

One could summarize that McConnell advocates that havirapsistent coding style as being an
advantage in many ways but cautions that the standardsdsheueveloped by the programmers
in the group and not dictated by nontechnical managers.

E.1.4 Lockheed Martin Joint Strike Fighter C++ Coding Standard

The Joint Strike Fighter Air Vehicle C++ Coding Standardsecument [5] from Lockheed Martin
defines C++ coding standards for high consequence applisafi.e. the multi-billion dollar JSF

67

program). While this standard is not the most strict stachaeut there, it does mandate many
different aspects of code formatting such as the placenm@hirelentation of braceq}’ (AV
Rules 59, 60, and 61) and the formatting of function protes/pAV Rule 58). The point is that
standards for high consequence (i.e. low tolerances f@ot&f may legitimately or otherwise
require greater uniformity in source code. While some offdrenatting mandates of this
document are different than those suggested in [7, Chapiett8s JSF standard in general is
advocated by such individuals as Bjarne Stroustflgnd is therefore not without some merit.

E.2 The keyboard analogy for coding styles

The issues involved in going back and forth between diffeverfamiliar code formatting styles are
similar to the issues in going back and forth between diffecmmputer keyboard layouts. While
some people may naturally prefer one type of keyboard tohemde.g. such as preferring an
ergonomic keyboard to avoid problems with repetitive strieguries or people with larger hands
having trouble with smaller keyboa%, a person is most proficient when using a single type of
keyboard for a long period of time. While a person can gehegat used to using a few different
types of keyboards that are used frequently (such as thaemngo keyboard for a desktop
computer and a smaller laptop keyboard), having to work siccally on a very different keyboard
really slows down a good typer and increases typing mistakesexample, a person who uses
PC-style keyboards with the Control key on the lower lefe @ampletely handicapped when using
a Sun keyboard where the Control key is where the Caps Loclskeyy a PC keyboard.

When given enough time, almost anyone can become accustonaegt reasonable keyboard
layout and can be productive (as long a unusual physicaki@inis are not involved). As long as
the person uses the keyboard consistently, the prodyctiiit be about the same as with a more
favored keyboard layout. Therefore, except for certaingitgl constraints, a person can learn how
to use most keyboard layouts given enough time, but switchatk and forth occasionally
between different keyboards really damages productivity iacreases mistakes.

The same is true for having to read and modify code that uskesetit code formatting styles. Just
about anyone can become accustomed to just about any reésconding style if given enough
time working with a particular style. However, switchingdkeand forth frequently between
different coding styles really does damages productivitgt sacreases coding mistakes for some
people, just as switching back and forth between differeybkards can really damage
productivity and increase typing mistakes.

E.3 Conclusions

The antagonism between pushing a common formatting stylebowing for individual freedom
is similar to a system-wide optimization problem that imes a number of subsystems. In our
case, the subsystems are individual coders and the whaknsysthe team as a whole. Optimizing

L0http:/Awww.research.att.com/"bs/C-++.html

LComputer mice layouts show even greater variability thaybkards and going between different types can hurt
productivity even greater. For example, a standard mousé&amt be more different than a trackball-type of mouse
and going from a standard mouse to a trackball only occalijooan severely degrade productivity if the individual is
unfamiliar with the trackball.

68

each subsystem separately would mean that each developkt ewen and code a district part of
the overall system. While this approach maximizes indigldieveloper productivity, it does not
maximize overall productivity in that it discourages andd®rs collective code ownership that has
been demonstrated to be highly effective in the right sgstife.g. Extreme Programming). On the
other hand, an overly ridged code formatting standard Wakafor collective code ownership but
it will also damage the individual productivity of every mber of the team. Therefore, the
“optimal” solution to the code formatting problem is to hate group adopt enough of a uniform
style to foster collective code ownership and speed codewsy but not to needlessly damage
individual coder productivity. The balance between thes#licting goals must be handled with
care and only group communication along with experienceexperimentation will yield a
near-optimal solution to the code formatting standard$lero for a particular team of developers.

While the above varied sources have different levels ofiopgon the importance on consistent
code formatting, they all agree that it is the developersgedves that should come up with the
guidelines, and not non-technical managers. They alseathdo agree that a coding standard that
is too ridged will do more harm than good (i.e. by damaginggtazluctivity and moral of

individual programmers).

The majority opinion of these experts, therefore, seemetihat a team of software developers
should get together and collectively decide on a sufficiehb§guidelines for code formatting and
each member should try to follow the spirit of the agreed ugtgte as much as is reasonable while
being allowed to bend or break the guidelines when apprigpria

69

F Guidelines for reformatting of source code

When a sufficiently common coding style is not being used bgle@lelopers in a project and no
recommendations for a common coding style exists, then guigelines are needed for the
situations where code written by one individual is modifigdanother individual that uses a
different coding style. These guidelines address how deegs should conduct themselves when
modifying source files written largely by someone else.

1. First and foremost, each developer should respect tlee ddvelopers’ formatting styles
when modifying their code. If a developer has a preferred &nstyle, then that style should
be listed explicitly at the top of each source file that is nfiedi This will help other
developers that use Emacs to stay consistent with the ftidés s

2. When only small changes are needed, a developer should bpithe formatting style
already in use in the file. This helps to respect other deestopnd helps to avoid needless
changes for the version control system to have to track. gelen user-defined
file-specific Emacs styles are specified, then it is easy totaiaia file's style when editing
files through Emacs.

3. Reformatting a file written by someone else and checkigi# only justified if significant
changes are made. However, if a developer needs to undist@mplicated piece of code
in order to make perhaps even a small change in the end, theddteloper may also be
justified in reformatting the file. When a reformatting is épthe new Emacs formatting
style should be added to the top of the source file in order tkentaeasier for the original
owner of the file and other developers to maintain the nevestyl

4. Multiple re-formats of the same file should not be checkeolvier and over again as this will
result in massive increases the the amount of informatianttie version control system
needs to keep track of and makes diffs more difficult to penfor

The above guidelines ensure that individuals are given mabireedom to format code to their
liking but also helps to foster the shared ownership andldpweent of code. In addition, the use
of user-defined file-specific formats makes it easy for dg@i®to accommodate formatting styles
different from their own.

70

@ Sandia National Laboratories

	Introduction
	Alpha-numeric item designations
	Naming conventions (NC)
	Naming and organization of source files (NOSF)
	Coding guidelines
	General coding guidelines (GCG)
	Error handling
	Memory management
	Object Control
	Object Introspection
	Miscellaneous coding guidelines

	Specification of for data members and passing and returning objects from functions

	Formatting of source code
	General formatting source code principles (FSCP)
	Specific guidelines for formatting source code (FSC)

	Doxygen documentation guidelines
	General principles for function and class level documentation (DOXP)
	Specific Doxygen documentation principles (DOX)

	References
	Summary of guidelines
	Summary of ``C++ Coding Standards'' (CPPCS) with amendments
	Summary of Teuchos memory management classes and idioms
	Miscellaneous amendments to ``C++ Coding Standards''
	Amendments to items related to compiler/linker incompatibilities
	Amendments for 'using' declarations and directives

	Arguments for adopting a consistent code formatting style
	Statements on coding style from varied persons and/or organizations
	Open source software (the GNU project)
	Agile Methods (Extreme Programming)
	Code Complete
	Lockheed Martin Joint Strike Fighter C++ Coding Standard

	The keyboard analogy for coding styles
	Conclusions

	Guidelines for reformatting of source code

