Tpetra Matrix/Vector Services Version of the Day
Public Types | Public Member Functions | Protected Member Functions | Protected Attributes | Related Functions
Tpetra::BlockMultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > Class Template Reference

Block-entry specialization of Tpetra::MultiVector. More...

#include <Tpetra_BlockMultiVector_decl.hpp>

Inheritance diagram for Tpetra::BlockMultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >:
Inheritance graph
[legend]

List of all members.

Public Types

typedef Scalar scalar_type
 The type of entries in the vector(s).
typedef LocalOrdinal local_ordinal_type
 The type of local indices.
typedef GlobalOrdinal global_ordinal_type
 The type of global indices.
typedef Node node_type
 The Kokkos Node type.
Typedefs to facilitate template metaprogramming.
typedef Scalar dot_type
 The type for inner product (dot) products.
typedef DistObject< Scalar,
LocalOrdinal, GlobalOrdinal,
Node > 
DO
Typedefs
typedef Scalar packet_type
 The type of each datum being sent or received in an Import or Export.

Public Member Functions

virtual void removeEmptyProcessesInPlace (const Teuchos::RCP< const Map< LocalOrdinal, GlobalOrdinal, Node > > &newMap)
 Remove processes owning zero rows from the Map and their communicator.
void setCopyOrView (const Teuchos::DataAccess copyOrView)
 Set whether this has copy (copyOrView = Teuchos::Copy) or view (copyOrView = Teuchos::View) semantics.
Teuchos::DataAccess getCopyOrView () const
 Get whether this has copy (copyOrView = Teuchos::Copy) or view (copyOrView = Teuchos::View) semantics.
Constructor/Destructor Methods
 BlockMultiVector (const Teuchos::RCP< const BlockMap< LocalOrdinal, GlobalOrdinal, Node > > &blockMap, size_t NumVectors, bool zeroOut=true)
 ~BlockMultiVector ()
 Destructor.
Attribute Queries
Teuchos::RCP< const BlockMap
< LocalOrdinal, GlobalOrdinal,
Node > > 
getBlockMap () const
Post-construction modification routines
void replaceGlobalValue (GlobalOrdinal globalBlockRow, LocalOrdinal blockOffset, size_t vectorIndex, const Scalar &value)
 Replace current value at the specified (globalBlockRow, blockOffset, vectorIndex) location with specified value.
void replaceLocalValue (LocalOrdinal localBlockRow, LocalOrdinal blockOffset, size_t vectorIndex, const Scalar &value)
 Replace current value at the specified (localBlockRow, blockOffset, vectorIndex) location with specified value.
void sumIntoGlobalValue (GlobalOrdinal globalBlockRow, LocalOrdinal blockOffset, size_t vectorIndex, const Scalar &value)
 Adds specified value to existing value at the specified (globalBlockRow, blockOffset, vectorIndex) location.
void sumIntoLocalValue (LocalOrdinal localBlockRow, LocalOrdinal blockOffset, size_t vectorIndex, const Scalar &value)
 Adds specified value to existing value at the specified (localBlockRow, blockOffset, vectorIndex) location with specified value.
Constructors and destructor
template<class Node2 >
Teuchos::RCP< MultiVector
< Scalar, LocalOrdinal,
GlobalOrdinal, Node2 > > 
clone (const Teuchos::RCP< Node2 > &node2) const
 Create a cloned MultiVector for a different node type.
Post-construction modification routines
void replaceGlobalValue (GlobalOrdinal globalRow, size_t vectorIndex, const Scalar &value)
 Replace value, using global (row) index.
void sumIntoGlobalValue (GlobalOrdinal globalRow, size_t vectorIndex, const Scalar &value)
 Add value to existing value, using global (row) index.
void replaceLocalValue (LocalOrdinal myRow, size_t vectorIndex, const Scalar &value)
 Replace value, using local (row) index.
void sumIntoLocalValue (LocalOrdinal myRow, size_t vectorIndex, const Scalar &value)
 Add value to existing value, using local (row) index.
void putScalar (const Scalar &value)
 Set all values in the multivector with the given value.
void randomize ()
 Set all values in the multivector to pseudorandom numbers.
void replaceMap (const Teuchos::RCP< const Map< LocalOrdinal, GlobalOrdinal, Node > > &map)
 Replace the underlying Map in place.
void reduce ()
 Sum values of a locally replicated multivector across all processes.
Data copy and view methods

These methods are used to get the data underlying the MultiVector. They return data in one of two forms:

  • A MultiVector with a subset of the rows or columns of the input MultiVector
  • An array of data, wrapped in one of the Teuchos memory management classes

Not all of these methods are valid for a particular MultiVector. For instance, calling a method that accesses a view of the data in a 1-D format (i.e., get1dView) requires that the target MultiVector has constant stride.

Teuchos::RCP< MultiVector
< Scalar, LocalOrdinal,
GlobalOrdinal, Node > > 
subCopy (const Teuchos::Range1D &colRng) const
 Return a MultiVector with copies of selected columns.
Teuchos::RCP< MultiVector
< Scalar, LocalOrdinal,
GlobalOrdinal, Node > > 
subCopy (const Teuchos::ArrayView< const size_t > &cols) const
 Return a MultiVector with copies of selected columns.
Teuchos::RCP< const
MultiVector< Scalar,
LocalOrdinal, GlobalOrdinal,
Node > > 
subView (const Teuchos::Range1D &colRng) const
 Return a MultiVector with const views of selected columns.
Teuchos::RCP< const
MultiVector< Scalar,
LocalOrdinal, GlobalOrdinal,
Node > > 
subView (const Teuchos::ArrayView< const size_t > &cols) const
 Return a const MultiVector with const views of selected columns.
Teuchos::RCP< MultiVector
< Scalar, LocalOrdinal,
GlobalOrdinal, Node > > 
subViewNonConst (const Teuchos::Range1D &colRng)
 Return a MultiVector with views of selected columns.
Teuchos::RCP< MultiVector
< Scalar, LocalOrdinal,
GlobalOrdinal, Node > > 
subViewNonConst (const Teuchos::ArrayView< const size_t > &cols)
 Return a MultiVector with views of selected columns.
Teuchos::RCP< const
MultiVector< Scalar,
LocalOrdinal, GlobalOrdinal,
Node > > 
offsetView (const Teuchos::RCP< const Map< LocalOrdinal, GlobalOrdinal, Node > > &subMap, size_t offset) const
 Return a const view of a subset of rows.
Teuchos::RCP< MultiVector
< Scalar, LocalOrdinal,
GlobalOrdinal, Node > > 
offsetViewNonConst (const Teuchos::RCP< const Map< LocalOrdinal, GlobalOrdinal, Node > > &subMap, size_t offset)
 Return a nonconst view of a subset of rows.
Teuchos::RCP< const Vector
< Scalar, LocalOrdinal,
GlobalOrdinal, Node > > 
getVector (size_t j) const
 Return a Vector which is a const view of column j.
Teuchos::RCP< Vector< Scalar,
LocalOrdinal, GlobalOrdinal,
Node > > 
getVectorNonConst (size_t j)
 Return a Vector which is a nonconst view of column j.
Teuchos::ArrayRCP< const Scalar > getData (size_t j) const
 Const view of the local values in a particular vector of this multivector.
Teuchos::ArrayRCP< Scalar > getDataNonConst (size_t j)
 View of the local values in a particular vector of this multivector.
void get1dCopy (Teuchos::ArrayView< Scalar > A, size_t LDA) const
 Fill the given array with a copy of this multivector's local values.
void get2dCopy (Teuchos::ArrayView< const Teuchos::ArrayView< Scalar > > ArrayOfPtrs) const
 Fill the given array with a copy of this multivector's local values.
Teuchos::ArrayRCP< const Scalar > get1dView () const
 Const persisting (1-D) view of this multivector's local values.
Teuchos::ArrayRCP
< Teuchos::ArrayRCP< const
Scalar > > 
get2dView () const
 Return const persisting pointers to values.
Teuchos::ArrayRCP< Scalar > get1dViewNonConst ()
 Nonconst persisting (1-D) view of this multivector's local values.
Teuchos::ArrayRCP
< Teuchos::ArrayRCP< Scalar > > 
get2dViewNonConst ()
 Return non-const persisting pointers to values.
KokkosClassic::MultiVector
< Scalar, Node > 
getLocalMV () const
 A view of the underlying KokkosClassic::MultiVector object.
TEUCHOS_DEPRECATED
KokkosClassic::MultiVector
< Scalar, Node > & 
getLocalMVNonConst ()
 A nonconst reference to a view of the underlying KokkosClassic::MultiVector object.
Mathematical methods
void dot (const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &A, const Teuchos::ArrayView< Scalar > &dots) const
 Compute the dot product of each corresponding pair of vectors (columns) in A and B.
void abs (const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &A)
 Put element-wise absolute values of input Multi-vector in target: A = abs(this)
void reciprocal (const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &A)
 Put element-wise reciprocal values of input Multi-vector in target, this(i,j) = 1/A(i,j).
void scale (const Scalar &alpha)
 Scale in place: this = alpha*this.
void scale (Teuchos::ArrayView< const Scalar > alpha)
 Scale each column in place: this[j] = alpha[j]*this[j].
void scale (const Scalar &alpha, const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &A)
 Scale in place: this = alpha * A.
void update (const Scalar &alpha, const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &A, const Scalar &beta)
 Update: this = beta*this + alpha*A.
void update (const Scalar &alpha, const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &A, const Scalar &beta, const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &B, const Scalar &gamma)
 Update: this = gamma*this + alpha*A + beta*B.
void norm1 (const Teuchos::ArrayView< typename Teuchos::ScalarTraits< Scalar >::magnitudeType > &norms) const
 Compute the one-norm of each vector (column).
void norm2 (const Teuchos::ArrayView< typename Teuchos::ScalarTraits< Scalar >::magnitudeType > &norms) const
 Compute the two-norm of each vector (column).
void normInf (const Teuchos::ArrayView< typename Teuchos::ScalarTraits< Scalar >::magnitudeType > &norms) const
 Compute the infinity-norm of each vector (column).
void normWeighted (const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &weights, const Teuchos::ArrayView< typename Teuchos::ScalarTraits< Scalar >::magnitudeType > &norms) const
void meanValue (const Teuchos::ArrayView< Scalar > &means) const
 Compute mean (average) value of each vector in multi-vector. The outcome of this routine is undefined for non-floating point scalar types (e.g., int).
void multiply (Teuchos::ETransp transA, Teuchos::ETransp transB, const Scalar &alpha, const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &A, const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &B, const Scalar &beta)
 Matrix-matrix multiplication: this = beta*this + alpha*op(A)*op(B).
void elementWiseMultiply (Scalar scalarAB, const Vector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &A, const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &B, Scalar scalarThis)
 Multiply a Vector A elementwise by a MultiVector B.
Attribute access functions
size_t getNumVectors () const
 Number of columns in the multivector.
size_t getLocalLength () const
 Local number of rows on the calling process.
global_size_t getGlobalLength () const
 Global number of rows in the multivector.
size_t getStride () const
 Stride between columns in the multivector.
bool isConstantStride () const
 Whether this multivector has constant stride between columns.
Overridden from Teuchos::Describable
virtual std::string description () const
 A simple one-line description of this object.
virtual void describe (Teuchos::FancyOStream &out, const Teuchos::EVerbosityLevel verbLevel=Teuchos::Describable::verbLevel_default) const
 Print the object with the given verbosity level to a FancyOStream.
Public methods for redistributing data
void doImport (const SrcDistObject &source, const Import< LocalOrdinal, GlobalOrdinal, Node > &importer, CombineMode CM)
 Import data into this object using an Import object ("forward mode").
void doImport (const SrcDistObject &source, const Export< LocalOrdinal, GlobalOrdinal, Node > &exporter, CombineMode CM)
 Import data into this object using an Export object ("reverse mode").
void doExport (const SrcDistObject &source, const Export< LocalOrdinal, GlobalOrdinal, Node > &exporter, CombineMode CM)
 Export data into this object using an Export object ("forward mode").
void doExport (const SrcDistObject &source, const Import< LocalOrdinal, GlobalOrdinal, Node > &importer, CombineMode CM)
 Export data into this object using an Import object ("reverse mode").
Attribute accessor methods
bool isDistributed () const
 Whether this is a globally distributed object.
virtual Teuchos::RCP< const
Map< LocalOrdinal,
GlobalOrdinal, Node > > 
getMap () const
 The Map describing the parallel distribution of this object.
I/O methods
void print (std::ostream &os) const
 Print this object to the given output stream.

Protected Member Functions

virtual void doTransfer (const SrcDistObject &src, CombineMode CM, size_t numSameIDs, const Teuchos::ArrayView< const LocalOrdinal > &permuteToLIDs, const Teuchos::ArrayView< const LocalOrdinal > &permuteFromLIDs, const Teuchos::ArrayView< const LocalOrdinal > &remoteLIDs, const Teuchos::ArrayView< const LocalOrdinal > &exportLIDs, Distributor &distor, ReverseOption revOp)
 Redistribute data across memory images.

Protected Attributes

KMV lclMV_
 The KokkosClassic::MultiVector containing the compute buffer of data.
Array< size_t > whichVectors_
 Indices of columns this multivector is viewing.
bool hasViewSemantics_
 Whether this MultiVector has view semantics.
Teuchos::RCP< const Map
< LocalOrdinal, GlobalOrdinal,
Node > > 
map_
 The Map over which this object is distributed.
Teuchos::Array< Scalar > imports_
 Buffer into which packed data are imported (received from other processes).
Teuchos::Array< size_t > numImportPacketsPerLID_
 Number of packets to receive for each receive operation.
Teuchos::Array< Scalar > exports_
 Buffer from which packed data are exported (sent to other processes).
Teuchos::Array< size_t > numExportPacketsPerLID_
 Number of packets to send for each send operation.

Friends

Methods for use only by experts
void removeEmptyProcessesInPlace (Teuchos::RCP< Tpetra::DistObject< PT, LO, GO, NT > > &input, const Teuchos::RCP< const Map< LO, GO, NT > > &newMap)
void removeEmptyProcessesInPlace (Teuchos::RCP< Tpetra::DistObject< PT, LO, GO, NT > > &input)

Related Functions

(Note that these are not member functions.)

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
MultiVector< Scalar,
LocalOrdinal, GlobalOrdinal,
Node > 
createCopy (const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &src)
 Return a deep copy of the MultiVector src.
template<class DS , class DL , class DG , class DN , class SS , class SL , class SG , class SN >
void deep_copy (MultiVector< DS, DL, DG, DN > &dst, const MultiVector< SS, SL, SG, SN > &src)
 Copy the contents of the MultiVector src into dst.

View constructors, used only by nonmember constructors.

struct Details::CreateMultiVectorFromView
bool vectorIndexOutOfRange (size_t VectorIndex) const
template<class T >
ArrayRCP< T > getSubArrayRCP (ArrayRCP< T > arr, size_t j) const

Implementation of Tpetra::DistObject

ArrayRCP< Scalar > ncview_
 Nonconst host view created in createViewsNonConst().
ArrayRCP< const Scalar > cview_
 Const host view created in createViews().
virtual bool checkSizes (const SrcDistObject &sourceObj)
 Whether data redistribution between sourceObj and this object is legal.
virtual size_t constantNumberOfPackets () const
 Number of packets to send per LID.
virtual void copyAndPermute (const SrcDistObject &sourceObj, size_t numSameIDs, const ArrayView< const LocalOrdinal > &permuteToLIDs, const ArrayView< const LocalOrdinal > &permuteFromLIDs)
 Perform copies and permutations that are local to this process.
virtual void packAndPrepare (const SrcDistObject &sourceObj, const ArrayView< const LocalOrdinal > &exportLIDs, Array< Scalar > &exports, const ArrayView< size_t > &numExportPacketsPerLID, size_t &constantNumPackets, Distributor &distor)
 Perform any packing or preparation required for communication.
virtual void unpackAndCombine (const ArrayView< const LocalOrdinal > &importLIDs, const ArrayView< const Scalar > &imports, const ArrayView< size_t > &numPacketsPerLID, size_t constantNumPackets, Distributor &distor, CombineMode CM)
 Perform any unpacking and combining after communication.
void createViews () const
 Hook for creating a const view.
void createViewsNonConst (KokkosClassic::ReadWriteOption rwo)
 Hook for creating a nonconst view.
void releaseViews () const
 Hook for releasing views.

Detailed Description

template<class Scalar, class LocalOrdinal = int, class GlobalOrdinal = LocalOrdinal, class Node = KokkosClassic::DefaultNode::DefaultNodeType>
class Tpetra::BlockMultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >

Block-entry specialization of Tpetra::MultiVector.

This class inherits (is-a) Tpetra::MultiVector, adding block-entry functionality for referencing/accessing data.

Definition at line 60 of file Tpetra_BlockMultiVector_decl.hpp.


Member Typedef Documentation

template<class Scalar, class LocalOrdinal = int, class GlobalOrdinal = LocalOrdinal, class Node = KokkosClassic::DefaultNode::DefaultNodeType>
typedef Scalar Tpetra::BlockMultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::scalar_type

The type of entries in the vector(s).

Reimplemented from Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 62 of file Tpetra_BlockMultiVector_decl.hpp.

template<class Scalar, class LocalOrdinal = int, class GlobalOrdinal = LocalOrdinal, class Node = KokkosClassic::DefaultNode::DefaultNodeType>
typedef LocalOrdinal Tpetra::BlockMultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::local_ordinal_type

The type of local indices.

Reimplemented from Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 63 of file Tpetra_BlockMultiVector_decl.hpp.

template<class Scalar, class LocalOrdinal = int, class GlobalOrdinal = LocalOrdinal, class Node = KokkosClassic::DefaultNode::DefaultNodeType>
typedef GlobalOrdinal Tpetra::BlockMultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::global_ordinal_type

The type of global indices.

Reimplemented from Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 64 of file Tpetra_BlockMultiVector_decl.hpp.

template<class Scalar, class LocalOrdinal = int, class GlobalOrdinal = LocalOrdinal, class Node = KokkosClassic::DefaultNode::DefaultNodeType>
typedef Node Tpetra::BlockMultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::node_type
template<class Scalar = double, class LocalOrdinal = int, class GlobalOrdinal = LocalOrdinal, class Node = KokkosClassic::DefaultNode::DefaultNodeType>
typedef Scalar Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::dot_type [inherited]

The type for inner product (dot) products.

This is not used and exists here purely for backwards-compatibility with Kokkos-Refactor.

Reimplemented in Tpetra::Vector< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 380 of file Tpetra_MultiVector_decl.hpp.

typedef Scalar Tpetra::DistObject< Scalar , LocalOrdinal, GlobalOrdinal, Node >::packet_type [inherited]

The type of each datum being sent or received in an Import or Export.

Note that this type does not always correspond to the Scalar template parameter of subclasses.

Definition at line 183 of file Tpetra_DistObject_decl.hpp.


Constructor & Destructor Documentation

template<class Scalar, class LocalOrdinal = int, class GlobalOrdinal = LocalOrdinal, class Node = KokkosClassic::DefaultNode::DefaultNodeType>
Tpetra::BlockMultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::~BlockMultiVector ( ) [inline]

Destructor.

Definition at line 73 of file Tpetra_BlockMultiVector_decl.hpp.


Member Function Documentation

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
void Tpetra::BlockMultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::replaceGlobalValue ( GlobalOrdinal  globalBlockRow,
LocalOrdinal  blockOffset,
size_t  vectorIndex,
const Scalar &  value 
)

Replace current value at the specified (globalBlockRow, blockOffset, vectorIndex) location with specified value.

Definition at line 75 of file Tpetra_BlockMultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
void Tpetra::BlockMultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::replaceLocalValue ( LocalOrdinal  localBlockRow,
LocalOrdinal  blockOffset,
size_t  vectorIndex,
const Scalar &  value 
)

Replace current value at the specified (localBlockRow, blockOffset, vectorIndex) location with specified value.

Definition at line 84 of file Tpetra_BlockMultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
void Tpetra::BlockMultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::sumIntoGlobalValue ( GlobalOrdinal  globalBlockRow,
LocalOrdinal  blockOffset,
size_t  vectorIndex,
const Scalar &  value 
)

Adds specified value to existing value at the specified (globalBlockRow, blockOffset, vectorIndex) location.

Definition at line 93 of file Tpetra_BlockMultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
void Tpetra::BlockMultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::sumIntoLocalValue ( LocalOrdinal  localBlockRow,
LocalOrdinal  blockOffset,
size_t  vectorIndex,
const Scalar &  value 
)

Adds specified value to existing value at the specified (localBlockRow, blockOffset, vectorIndex) location with specified value.

Definition at line 102 of file Tpetra_BlockMultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
template<class Node2 >
Teuchos::RCP< MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node2 > > Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::clone ( const Teuchos::RCP< Node2 > &  node2) const [inherited]

Create a cloned MultiVector for a different node type.

Definition at line 1514 of file Tpetra_MultiVector_decl.hpp.

template<class Scalar, class LocalOrdinal , class GlobalOrdinal, class Node >
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::replaceGlobalValue ( GlobalOrdinal  globalRow,
size_t  vectorIndex,
const Scalar &  value 
) [inherited]

Replace value, using global (row) index.

Replace the current value at row globalRow (a global index) and column vectorIndex with the given value. The column index is zero based.

Precondition:
globalRow must be a valid global element on this process, according to the row Map.

Definition at line 2894 of file Tpetra_MultiVector_def.hpp.

template<class Scalar, class LocalOrdinal , class GlobalOrdinal, class Node >
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::sumIntoGlobalValue ( GlobalOrdinal  globalRow,
size_t  vectorIndex,
const Scalar &  value 
) [inherited]

Add value to existing value, using global (row) index.

Add the given value to the existing value at row globalRow (a global index) and column vectorIndex. The column index is zero based.

Precondition:
globalRow must be a valid global element on this process, according to the row Map.

Definition at line 2918 of file Tpetra_MultiVector_def.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal , class Node >
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::replaceLocalValue ( LocalOrdinal  myRow,
size_t  vectorIndex,
const Scalar &  value 
) [inherited]

Replace value, using local (row) index.

Replace the current value at row myRow (a local index) and column vectorIndex with the given value. The column index is zero based.

Precondition:
myRow must be a valid local element on this process, according to the row Map.

Definition at line 2836 of file Tpetra_MultiVector_def.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal , class Node >
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::sumIntoLocalValue ( LocalOrdinal  myRow,
size_t  vectorIndex,
const Scalar &  value 
) [inherited]

Add value to existing value, using local (row) index.

Add the given value to the existing value at row myRow (a local index) and column vectorIndex. The column index is zero based.

Precondition:
myRow must be a valid local element on this process, according to the row Map.

Definition at line 2865 of file Tpetra_MultiVector_def.hpp.

template<class Scalar, class LocalOrdinal , class GlobalOrdinal , class Node >
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::putScalar ( const Scalar &  value) [inherited]

Set all values in the multivector with the given value.

Definition at line 1559 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::randomize ( ) [inherited]

Set all values in the multivector to pseudorandom numbers.

Note:
The implementation of this method may depend on the Kokkos Node type and on what third-party libraries you have available. Do not expect repeatable results.
Behavior of this method may or may not depend on external use of the C library routines srand() and rand().
Warning:
This method does not promise to use a distributed-memory parallel pseudorandom number generator. Corresponding values on different processes might be correlated. It also does not promise to use a high-quality pseudorandom number generator within each process.
Examples:
lesson03_power_method.cpp.

Definition at line 1538 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal, class GlobalOrdinal, class Node>
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::replaceMap ( const Teuchos::RCP< const Map< LocalOrdinal, GlobalOrdinal, Node > > &  map) [inherited]

Replace the underlying Map in place.

Warning:
The normal use case of this method, with an input Map that is compatible with the object's current Map and has the same communicator, is safe. However, if the input Map has a different communicator (with a different number of processes, in particular) than this object's current Map, the semantics of this method are tricky. We recommend that only experts try the latter use case.
Precondition:
If the new Map's communicator is similar to the original Map's communicator, then the original Map and new Map must be compatible: map->isCompatible (this->getMap ()). "Similar" means that the communicators have the same number of processes, though these need not be in the same order (have the same assignments of ranks) or represent the same communication contexts. It means the same thing as the MPI_SIMILAR return value of MPI_COMM_COMPARE. See MPI 3.0 Standard, Section 6.4.1.
If the new Map's communicator contains more processes than the original Map's communicator, then the projection of the original Map onto the new communicator must be compatible with the new Map.
If the new Map's communicator contains fewer processes than the original Map's communicator, then the projection of the new Map onto the original communicator must be compatible with the original Map.

This method replaces this object's Map with the given Map. This relabels the rows of the multivector using the global IDs in the input Map. Thus, it implicitly applies a permutation, without actually moving data. If the new Map's communicator has more processes than the original Map's communicator, it "projects" the MultiVector onto the new Map by filling in missing rows with zeros. If the new Map's communicator has fewer processes than the original Map's communicator, the method "forgets about" any rows that do not exist in the new Map. (It mathematical terms, if one considers a MultiVector as a function from one vector space to another, this operation restricts the range.)

This method must always be called collectively on the communicator with the largest number of processes: either this object's current communicator (this->getMap()->getComm()), or the new Map's communicator (map->getComm()). If the new Map's communicator has fewer processes, then the new Map must be null on processes excluded from the original communicator, and the current Map must be nonnull on all processes. If the new Map has more processes, then it must be nonnull on all those processes, and the original Map must be null on those processes which are not in the new Map's communicator. (The latter case can only happen to a MultiVector to which a replaceMap() operation has happened before.)

Warning:
This method must always be called as a collective operation on all processes in the original communicator (this->getMap ()->getComm ()). We reserve the right to do checking in debug mode that requires this method to be called collectively in order not to deadlock.
Note:
This method does not do data redistribution. If you need to move data around, use Import or Export.

Definition at line 1580 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::reduce ( ) [inherited]

Sum values of a locally replicated multivector across all processes.

Warning:
This method may only be called for locally replicated MultiVectors.
Precondition:
isDistributed() == false

Definition at line 2769 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
Teuchos::RCP< MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > > Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::subCopy ( const Teuchos::Range1D colRng) const [inherited]

Return a MultiVector with copies of selected columns.

Parameters:
colRng[in] Inclusive, contiguous range of columns. [colRng.lbound(), colRng.ubound()] defines the range.

Definition at line 2118 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
Teuchos::RCP< MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > > Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::subCopy ( const Teuchos::ArrayView< const size_t > &  cols) const [inherited]

Return a MultiVector with copies of selected columns.

Definition at line 2092 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
Teuchos::RCP< const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > > Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::subView ( const Teuchos::Range1D colRng) const [inherited]

Return a MultiVector with const views of selected columns.

Parameters:
colRng[in] Inclusive, contiguous range of columns. [colRng.lbound(), colRng.ubound()] defines the range.

Definition at line 2275 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
Teuchos::RCP< const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > > Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::subView ( const Teuchos::ArrayView< const size_t > &  cols) const [inherited]

Return a const MultiVector with const views of selected columns.

Definition at line 2222 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
Teuchos::RCP< MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > > Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::subViewNonConst ( const Teuchos::Range1D colRng) [inherited]

Return a MultiVector with views of selected columns.

Parameters:
colRng[in] Inclusive, contiguous range of columns. [colRng.lbound(), colRng.ubound()] defines the range.

Definition at line 2335 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
Teuchos::RCP< MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > > Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::subViewNonConst ( const Teuchos::ArrayView< const size_t > &  cols) [inherited]

Return a MultiVector with views of selected columns.

Definition at line 2309 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal, class GlobalOrdinal, class Node>
Teuchos::RCP< const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > > Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::offsetView ( const Teuchos::RCP< const Map< LocalOrdinal, GlobalOrdinal, Node > > &  subMap,
size_t  offset 
) const [inherited]

Return a const view of a subset of rows.

Return a const (nonmodifiable) view of this MultiVector consisting of a subset of the rows, as specified by an offset and a subset Map of this MultiVector's current row Map. If you want X1 or X2 to be nonconst (modifiable) views, use offsetViewNonConst() with the same arguments. "View" means "alias": if the original (this) MultiVector's data change, the view will see the changed data.

Parameters:
subMap[in] The row Map for the new MultiVector. This must be a subset Map of this MultiVector's row Map.
offset[in] The local row offset at which to start the view.

Suppose that you have a MultiVector X, and you want to view X, on all processes in X's (MPI) communicator, as split into two row blocks X1 and X2. One could express this in Matlab notation as X = [X1; X2], except that here, X1 and X2 are views into X, rather than copies of X's data. This method assumes that the local indices of X1 and X2 are each contiguous, and that the local indices of X2 follow those of X1. If that is not the case, you cannot use views to divide X into blocks like this; you must instead use the Import or Export functionality, which copies the relevant rows of X.

Here is how you would construct the views X1 and X2.

 using Teuchos::RCP;
 typedef Tpetra::Map<LO, GO, Node> map_type;
 typedef Tpetra::MultiVector<Scalar, LO, GO, Node> MV;

 MV X (...); // the input MultiVector
 // ... fill X with data ...

 // Map that on each process in X's communicator,
 // contains the global indices of the rows of X1.
 RCP<const map_type> map1 (new map_type (...));
 // Map that on each process in X's communicator,
 // contains the global indices of the rows of X2.
 RCP<const map_type> map2 (new map_type (...));

 // Create the first view X1.  The second argument, the offset,
 // is the index of the local row at which to start the view.
 // X1 is the topmost block of X, so the offset is zero.
 RCP<const MV> X1 = X.offsetView (map1, 0);

 // Create the second view X2.  X2 is directly below X1 in X,
 // so the offset is the local number of rows in X1.  This is
 // the same as the local number of entries in map1.
 RCP<const MV> X2 = X.offsetView (map2, X1->getLocalLength ());

It is legal, in the above example, for X1 or X2 to have zero local rows on any or all process(es). In that case, the corresponding Map must have zero local entries on that / those process(es). In particular, if X2 has zero local rows on a process, then the corresponding offset on that process would be the number of local rows in X (and therefore in X1) on that process. This is the only case in which the sum of the local number of entries in subMap (in this case, zero) and the offset may equal the number of local entries in *this.

Reimplemented in Tpetra::Vector< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 2144 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal, class GlobalOrdinal, class Node>
Teuchos::RCP< MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > > Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::offsetViewNonConst ( const Teuchos::RCP< const Map< LocalOrdinal, GlobalOrdinal, Node > > &  subMap,
size_t  offset 
) [inherited]

Return a nonconst view of a subset of rows.

Return a nonconst (modifiable) view of this MultiVector consisting of a subset of the rows, as specified by an offset and a subset Map of this MultiVector's current row Map. If you want X1 or X2 to be const (nonmodifiable) views, use offsetView() with the same arguments. "View" means "alias": if the original (this) MultiVector's data change, the view will see the changed data, and if the view's data change, the original MultiVector will see the changed data.

Parameters:
subMap[in] The row Map for the new MultiVector. This must be a subset Map of this MultiVector's row Map.
offset[in] The local row offset at which to start the view.

See the documentation of offsetView() for a code example and an explanation of edge cases.

Reimplemented in Tpetra::Vector< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 2183 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
Teuchos::RCP< const Vector< Scalar, LocalOrdinal, GlobalOrdinal, Node > > Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::getVector ( size_t  j) const [inherited]

Return a Vector which is a const view of column j.

Definition at line 2367 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
Teuchos::RCP< Vector< Scalar, LocalOrdinal, GlobalOrdinal, Node > > Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::getVectorNonConst ( size_t  j) [inherited]

Return a Vector which is a nonconst view of column j.

Definition at line 2392 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
Teuchos::ArrayRCP< const Scalar > Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::getData ( size_t  j) const [inherited]

Const view of the local values in a particular vector of this multivector.

Definition at line 1994 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
Teuchos::ArrayRCP< Scalar > Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::getDataNonConst ( size_t  j) [inherited]

View of the local values in a particular vector of this multivector.

Definition at line 2004 of file Tpetra_MultiVector_def.hpp.

template<class Scalar, class LocalOrdinal , class GlobalOrdinal , class Node >
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::get1dCopy ( Teuchos::ArrayView< Scalar >  A,
size_t  LDA 
) const [inherited]

Fill the given array with a copy of this multivector's local values.

Parameters:
A[out] View of the array to fill. We consider A as a matrix with column-major storage.
LDA[in] Leading dimension of the matrix A.

Definition at line 2413 of file Tpetra_MultiVector_def.hpp.

template<class Scalar, class LocalOrdinal , class GlobalOrdinal , class Node >
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::get2dCopy ( Teuchos::ArrayView< const Teuchos::ArrayView< Scalar > >  ArrayOfPtrs) const [inherited]

Fill the given array with a copy of this multivector's local values.

Parameters:
ArrayOfPtrs[out] Array of arrays, one for each column of the multivector. On output, we fill ArrayOfPtrs[j] with the data for column j of this multivector.

Definition at line 2449 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
Teuchos::ArrayRCP< const Scalar > Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::get1dView ( ) const [inherited]

Const persisting (1-D) view of this multivector's local values.

This method assumes that the columns of the multivector are stored contiguously. If not, this method throws std::runtime_error.

Definition at line 2484 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
Teuchos::ArrayRCP< Teuchos::ArrayRCP< const Scalar > > Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::get2dView ( ) const [inherited]

Return const persisting pointers to values.

Definition at line 2565 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
Teuchos::ArrayRCP< Scalar > Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::get1dViewNonConst ( ) [inherited]

Nonconst persisting (1-D) view of this multivector's local values.

This method assumes that the columns of the multivector are stored contiguously. If not, this method throws std::runtime_error.

Definition at line 2505 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
Teuchos::ArrayRCP< Teuchos::ArrayRCP< Scalar > > Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::get2dViewNonConst ( ) [inherited]

Return non-const persisting pointers to values.

Definition at line 2527 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
KokkosClassic::MultiVector< Scalar, Node > Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::getLocalMV ( ) const [inherited]

A view of the underlying KokkosClassic::MultiVector object.

This method is for expert users only. It may change or be removed at any time.

Definition at line 2960 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
TEUCHOS_DEPRECATED KokkosClassic::MultiVector< Scalar, Node > & Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::getLocalMVNonConst ( ) [inherited]

A nonconst reference to a view of the underlying KokkosClassic::MultiVector object.

This method is for expert users only. It may change or be removed at any time.

Warning:
This method is DEPRECATED. It may disappear at any time. Please call getLocalMV() instead. There was never actually a need for a getLocalMVNonConst() method, as far as I can tell.

Definition at line 2967 of file Tpetra_MultiVector_def.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::dot ( const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &  A,
const Teuchos::ArrayView< Scalar > &  dots 
) const [inherited]

Compute the dot product of each corresponding pair of vectors (columns) in A and B.

The "dot product" is the standard Euclidean inner product. If the type of entries of the vectors (scalar_type) is complex, then A is transposed, not *this. For example, if x and y each have one column, then x.dot (y, dots) computes $y^* x = \bar{y}^T x = \sum_i \bar{y}_i \cdot x_i$.

Precondition:
*this and A have the same number of columns (vectors).
dots has at least as many entries as the number of columns in A.
Postcondition:
dots[j] == (this->getVector[j])->dot (* (A.getVector[j]))

Definition at line 1244 of file Tpetra_MultiVector_def.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::abs ( const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &  A) [inherited]

Put element-wise absolute values of input Multi-vector in target: A = abs(this)

Definition at line 1863 of file Tpetra_MultiVector_def.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::reciprocal ( const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &  A) [inherited]

Put element-wise reciprocal values of input Multi-vector in target, this(i,j) = 1/A(i,j).

Definition at line 1817 of file Tpetra_MultiVector_def.hpp.

template<class Scalar, class LocalOrdinal , class GlobalOrdinal , class Node >
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::scale ( const Scalar &  alpha) [inherited]

Scale in place: this = alpha*this.

Replace this MultiVector with alpha times this MultiVector. This method will always multiply, even if alpha is zero. That means, for example, that if *this contains NaN entries before calling this method, the NaN entries will remain after this method finishes.

Definition at line 1674 of file Tpetra_MultiVector_def.hpp.

template<class Scalar, class LocalOrdinal , class GlobalOrdinal , class Node >
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::scale ( Teuchos::ArrayView< const Scalar >  alpha) [inherited]

Scale each column in place: this[j] = alpha[j]*this[j].

Replace each column j of this MultiVector with alpha[j] times the current column j of this MultiVector. This method will always multiply, even if all the entries of alpha are zero. That means, for example, that if *this contains NaN entries before calling this method, the NaN entries will remain after this method finishes.

Definition at line 1704 of file Tpetra_MultiVector_def.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::scale ( const Scalar &  alpha,
const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &  A 
) [inherited]

Scale in place: this = alpha * A.

Replace this MultiVector with scaled values of A. This method will always multiply, even if alpha is zero. That means, for example, that if *this contains NaN entries before calling this method, the NaN entries will remain after this method finishes. It is legal for the input A to alias this MultiVector.

Definition at line 1775 of file Tpetra_MultiVector_def.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::update ( const Scalar &  alpha,
const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &  A,
const Scalar &  beta 
) [inherited]

Update: this = beta*this + alpha*A.

Update this MultiVector with scaled values of A. If beta is zero, overwrite *this unconditionally, even if it contains NaN entries. It is legal for the input A to alias this MultiVector.

Definition at line 1900 of file Tpetra_MultiVector_def.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::update ( const Scalar &  alpha,
const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &  A,
const Scalar &  beta,
const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &  B,
const Scalar &  gamma 
) [inherited]

Update: this = gamma*this + alpha*A + beta*B.

Update this MultiVector with scaled values of A and B. If gamma is zero, overwrite *this unconditionally, even if it contains NaN entries. It is legal for the inputs A or B to alias this MultiVector.

Definition at line 1943 of file Tpetra_MultiVector_def.hpp.

template<class Scalar, class LocalOrdinal , class GlobalOrdinal , class Node >
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::norm1 ( const Teuchos::ArrayView< typename Teuchos::ScalarTraits< Scalar >::magnitudeType > &  norms) const [inherited]

Compute the one-norm of each vector (column).

The one-norm of a vector is the sum of squares of the magnitudes of the vector's entries. On exit, norms[k] is the one-norm of column k of this MultiVector.

Definition at line 1413 of file Tpetra_MultiVector_def.hpp.

template<class Scalar, class LocalOrdinal , class GlobalOrdinal , class Node >
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::norm2 ( const Teuchos::ArrayView< typename Teuchos::ScalarTraits< Scalar >::magnitudeType > &  norms) const [inherited]

Compute the two-norm of each vector (column).

The two-norm of a vector is the standard Euclidean norm, the square root of the sum of squares of the magnitudes of the vector's entries. On exit, norms[k] is the two-norm of column k of this MultiVector.

Definition at line 1295 of file Tpetra_MultiVector_def.hpp.

template<class Scalar, class LocalOrdinal , class GlobalOrdinal , class Node >
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::normInf ( const Teuchos::ArrayView< typename Teuchos::ScalarTraits< Scalar >::magnitudeType > &  norms) const [inherited]

Compute the infinity-norm of each vector (column).

The infinity-norm of a vector is the maximum of the magnitudes of the vector's entries. On exit, norms[k] is the infinity-norm of column k of this MultiVector.

Definition at line 1451 of file Tpetra_MultiVector_def.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::normWeighted ( const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &  weights,
const Teuchos::ArrayView< typename Teuchos::ScalarTraits< Scalar >::magnitudeType > &  norms 
) const [inherited]

Compute Weighted 2-norm (RMS Norm) of each vector in multi-vector. The outcome of this routine is undefined for non-floating point scalar types (e.g., int).

Definition at line 1341 of file Tpetra_MultiVector_def.hpp.

template<class Scalar, class LocalOrdinal , class GlobalOrdinal , class Node >
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::meanValue ( const Teuchos::ArrayView< Scalar > &  means) const [inherited]

Compute mean (average) value of each vector in multi-vector. The outcome of this routine is undefined for non-floating point scalar types (e.g., int).

Definition at line 1487 of file Tpetra_MultiVector_def.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::multiply ( Teuchos::ETransp  transA,
Teuchos::ETransp  transB,
const Scalar &  alpha,
const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &  A,
const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &  B,
const Scalar &  beta 
) [inherited]

Matrix-matrix multiplication: this = beta*this + alpha*op(A)*op(B).

If beta is zero, overwrite *this unconditionally, even if it contains NaN entries. This imitates the semantics of analogous BLAS routines like DGEMM.

Definition at line 2604 of file Tpetra_MultiVector_def.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::elementWiseMultiply ( Scalar  scalarAB,
const Vector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &  A,
const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &  B,
Scalar  scalarThis 
) [inherited]

Multiply a Vector A elementwise by a MultiVector B.

Compute this = scalarThis * this + scalarAB * B @ A where </tt> denotes element-wise multiplication. In pseudocode, if C denotes *this MultiVector:

 C(i,j) = scalarThis * C(i,j) + scalarAB * B(i,j) * A(i,1);

for all rows i and columns j of C.

B must have the same dimensions as *this, while A must have the same number of rows but a single column.

We do not require that A, B, and *this have compatible Maps, as long as the number of rows in A, B, and *this on each process is the same. For example, one or more of these vectors might have a locally replicated Map, or a Map with a local communicator (MPI_COMM_SELF). This case may occur in block relaxation algorithms when applying a diagonal scaling.

Definition at line 2739 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
size_t Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::getNumVectors ( ) const [inline, inherited]

Number of columns in the multivector.

Definition at line 1231 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
size_t Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::getLocalLength ( ) const [inherited]

Local number of rows on the calling process.

Definition at line 503 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
global_size_t Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::getGlobalLength ( ) const [inherited]

Global number of rows in the multivector.

Definition at line 514 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
size_t Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::getStride ( ) const [inherited]

Stride between columns in the multivector.

This is only meaningful if isConstantStride() returns true.

Warning:
This may be different on different processes.

Definition at line 525 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
bool Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::isConstantStride ( ) const [inherited]

Whether this multivector has constant stride between columns.

Warning:
This may be different on different processes.

Definition at line 496 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
std::string Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::description ( ) const [virtual, inherited]

A simple one-line description of this object.

Reimplemented from Tpetra::DistObject< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Reimplemented in Tpetra::Vector< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 2973 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::describe ( Teuchos::FancyOStream out,
const Teuchos::EVerbosityLevel  verbLevel = Teuchos::Describable::verbLevel_default 
) const [virtual, inherited]

Print the object with the given verbosity level to a FancyOStream.

Parameters:
out[out] Output stream to which to print. For verbosity levels VERB_LOW and lower, only the process with rank 0 ("Proc 0") in the MultiVector's communicator prints. For verbosity levels strictly higher than VERB_LOW, all processes in the communicator need to be able to print to the output stream.
verbLevel[in] Verbosity level. The default verbosity (verbLevel=VERB_DEFAULT) is VERB_LOW.

The amount and content of what this method prints depends on the verbosity level. In the list below, each higher level includes all the content of the previous levels, as well as its own content.

  • VERB_LOW: Only Proc 0 prints; it prints the same thing as description().
  • VERB_MEDIUM: Each process prints its local length (the number of rows that it owns).
  • VERB_HIGH: Each process prints whether the multivector has constant stride (see isConstantStride()), and if so, what that stride is. (Stride may differ on different processes.)
  • VERB_EXTREME: Each process prints the values in its local part of the multivector. This will print out as many rows of data as the global number of rows in the multivector, so beware.

Reimplemented from Tpetra::DistObject< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Reimplemented in Tpetra::Vector< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 2992 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal, class GlobalOrdinal, class Node>
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::removeEmptyProcessesInPlace ( const Teuchos::RCP< const Map< LocalOrdinal, GlobalOrdinal, Node > > &  newMap) [virtual, inherited]

Remove processes owning zero rows from the Map and their communicator.

Warning:
This method is ONLY for use by experts. We highly recommend using the nonmember function of the same name defined in Tpetra_DistObject_decl.hpp.
We make NO promises of backwards compatibility. This method may change or disappear at any time.
Parameters:
newMap[in] This must be the result of calling the removeEmptyProcesses() method on the row Map. If it is not, this method's behavior is undefined. This pointer will be null on excluded processes.

Reimplemented from Tpetra::DistObject< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 3136 of file Tpetra_MultiVector_def.hpp.

template<class Scalar = double, class LocalOrdinal = int, class GlobalOrdinal = LocalOrdinal, class Node = KokkosClassic::DefaultNode::DefaultNodeType>
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::setCopyOrView ( const Teuchos::DataAccess  copyOrView) [inline, inherited]

Set whether this has copy (copyOrView = Teuchos::Copy) or view (copyOrView = Teuchos::View) semantics.

Warning:
This method is only for expert use. It may change or disappear at any time.

Definition at line 1113 of file Tpetra_MultiVector_decl.hpp.

template<class Scalar = double, class LocalOrdinal = int, class GlobalOrdinal = LocalOrdinal, class Node = KokkosClassic::DefaultNode::DefaultNodeType>
Teuchos::DataAccess Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::getCopyOrView ( ) const [inline, inherited]

Get whether this has copy (copyOrView = Teuchos::Copy) or view (copyOrView = Teuchos::View) semantics.

Warning:
This method is only for expert use. It may change or disappear at any time.

Definition at line 1122 of file Tpetra_MultiVector_decl.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
bool Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::checkSizes ( const SrcDistObject sourceObj) [protected, virtual, inherited]

Whether data redistribution between sourceObj and this object is legal.

This method is called in DistObject::doTransfer() to check whether data redistribution between the two objects is legal.

Implements Tpetra::DistObject< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 536 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
size_t Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::constantNumberOfPackets ( ) const [protected, virtual, inherited]

Number of packets to send per LID.

Reimplemented from Tpetra::DistObject< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 559 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal, class GlobalOrdinal , class Node >
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::copyAndPermute ( const SrcDistObject source,
size_t  numSameIDs,
const ArrayView< const LocalOrdinal > &  permuteToLIDs,
const ArrayView< const LocalOrdinal > &  permuteFromLIDs 
) [protected, virtual, inherited]

Perform copies and permutations that are local to this process.

Parameters:
source[in] On entry, the source object, from which we are distributing. We distribute to the destination object, which is *this object.
numSameIDs[in] The umber of elements that are the same on the source and destination (this) objects. These elements are owned by the same process in both the source and destination objects. No permutation occurs.
numPermuteIDs[in] The number of elements that are locally permuted between the source and destination objects.
permuteToLIDs[in] List of the elements that are permuted. They are listed by their LID in the destination object.
permuteFromLIDs[in] List of the elements that are permuted. They are listed by their LID in the source object.

Implements Tpetra::DistObject< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 916 of file Tpetra_MultiVector_def.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal , class Node >
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::packAndPrepare ( const SrcDistObject source,
const ArrayView< const LocalOrdinal > &  exportLIDs,
Array< Scalar > &  exports,
const ArrayView< size_t > &  numPacketsPerLID,
size_t &  constantNumPackets,
Distributor distor 
) [protected, virtual, inherited]

Perform any packing or preparation required for communication.

Parameters:
source[in] Source object for the redistribution.
exportLIDs[in] List of the entries (as local IDs in the source object) we will be sending to other images.
exports[out] On exit, the buffer for data to send.
numPacketsPerLID[out] On exit, the implementation of this method must do one of two things: set numPacketsPerLID[i] to contain the number of packets to be exported for exportLIDs[i] and set constantNumPackets to zero, or set constantNumPackets to a nonzero value. If the latter, the implementation need not fill numPacketsPerLID.
constantNumPackets[out] On exit, 0 if numPacketsPerLID has variable contents (different size for each LID). If nonzero, then it is expected that the number of packets per LID is constant, and that constantNumPackets is that value.
distor[in] The Distributor object we are using.

Implements Tpetra::DistObject< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 1022 of file Tpetra_MultiVector_def.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal , class Node >
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::unpackAndCombine ( const ArrayView< const LocalOrdinal > &  importLIDs,
const ArrayView< const Scalar > &  imports,
const ArrayView< size_t > &  numPacketsPerLID,
size_t  constantNumPackets,
Distributor distor,
CombineMode  CM 
) [protected, virtual, inherited]

Perform any unpacking and combining after communication.

Parameters:
importLIDs[in] List of the entries (as LIDs in the destination object) we received from other images.
imports[in] Buffer containing data we received.
numPacketsPerLID[in] If constantNumPackets is zero, then numPacketsPerLID[i] contains the number of packets imported for importLIDs[i].
constantNumPackets[in] If nonzero, then numPacketsPerLID is constant (same value in all entries) and constantNumPackets is that value. If zero, then numPacketsPerLID[i] is the number of packets imported for importLIDs[i].
distor[in] The Distributor object we are using.
CM[in] The combine mode to use when combining the imported entries with existing entries.

Implements Tpetra::DistObject< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 1104 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::createViews ( ) const [protected, virtual, inherited]

Hook for creating a const view.

doTransfer() calls this on the source object. By default, it does nothing, but the source object can use this as a hint to fetch data from a compute buffer on an off-CPU device (such as a GPU) into host memory.

Reimplemented from Tpetra::DistObject< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 3093 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::createViewsNonConst ( KokkosClassic::ReadWriteOption  rwo) [protected, virtual, inherited]

Hook for creating a nonconst view.

doTransfer() calls this on the destination (*this) object. By default, it does nothing, but the destination object can use this as a hint to fetch data from a compute buffer on an off-CPU device (such as a GPU) into host memory.

Parameters:
rwo[in] Whether to create a write-only or a read-and-write view. For Kokkos Node types where compute buffers live in a separate memory space (e.g., in the device memory of a discrete accelerator like a GPU), a write-only view only requires copying from host memory to the compute buffer, whereas a read-and-write view requires copying both ways (once to read, from the compute buffer to host memory, and once to write, back to the compute buffer).

Reimplemented from Tpetra::DistObject< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 3105 of file Tpetra_MultiVector_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
void Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::releaseViews ( ) const [protected, virtual, inherited]

Hook for releasing views.

doTransfer() calls this on both the source and destination objects, once it no longer needs to access that object's data. By default, this method does nothing. Implementations may use this as a hint to free host memory which is a view of a compute buffer, once the host memory view is no longer needed. Some implementations may prefer to mirror compute buffers in host memory; for these implementations, releaseViews() may do nothing.

Reimplemented from Tpetra::DistObject< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 3116 of file Tpetra_MultiVector_def.hpp.

void Tpetra::DistObject< Scalar , LocalOrdinal, GlobalOrdinal, Node >::doImport ( const SrcDistObject< Scalar, LocalOrdinal, GlobalOrdinal, Node > &  source,
const Import< LocalOrdinal, GlobalOrdinal, Node > &  importer,
CombineMode  CM 
) [inherited]

Import data into this object using an Import object ("forward mode").

The input DistObject is always the source of the data redistribution operation, and the *this object is always the target.

If you don't know the difference between forward and reverse mode, then you probably want forward mode. Use this method with your precomputed Import object if you want to do an Import, else use doExport() with a precomputed Export object.

Parameters:
source[in] The "source" object for redistribution.
importer[in] Precomputed data redistribution plan. Its source Map must be the same as the input DistObject's Map, and its target Map must be the same as this->getMap().
CM[in] How to combine incoming data with the same global index.
void Tpetra::DistObject< Scalar , LocalOrdinal, GlobalOrdinal, Node >::doImport ( const SrcDistObject< Scalar, LocalOrdinal, GlobalOrdinal, Node > &  source,
const Export< LocalOrdinal, GlobalOrdinal, Node > &  exporter,
CombineMode  CM 
) [inherited]

Import data into this object using an Export object ("reverse mode").

The input DistObject is always the source of the data redistribution operation, and the *this object is always the target.

If you don't know the difference between forward and reverse mode, then you probably want forward mode. Use the version of doImport() that takes a precomputed Import object in that case.

Parameters:
source[in] The "source" object for redistribution.
exporter[in] Precomputed data redistribution plan. Its target Map must be the same as the input DistObject's Map, and its source Map must be the same as this->getMap(). (Note the difference from forward mode.)
CM[in] How to combine incoming data with the same global index.
void Tpetra::DistObject< Scalar , LocalOrdinal, GlobalOrdinal, Node >::doExport ( const SrcDistObject< Scalar, LocalOrdinal, GlobalOrdinal, Node > &  source,
const Export< LocalOrdinal, GlobalOrdinal, Node > &  exporter,
CombineMode  CM 
) [inherited]

Export data into this object using an Export object ("forward mode").

The input DistObject is always the source of the data redistribution operation, and the *this object is always the target.

If you don't know the difference between forward and reverse mode, then you probably want forward mode. Use this method with your precomputed Export object if you want to do an Export, else use doImport() with a precomputed Import object.

Parameters:
source[in] The "source" object for redistribution.
exporter[in] Precomputed data redistribution plan. Its source Map must be the same as the input DistObject's Map, and its target Map must be the same as this->getMap().
CM[in] How to combine incoming data with the same global index.
void Tpetra::DistObject< Scalar , LocalOrdinal, GlobalOrdinal, Node >::doExport ( const SrcDistObject< Scalar, LocalOrdinal, GlobalOrdinal, Node > &  source,
const Import< LocalOrdinal, GlobalOrdinal, Node > &  importer,
CombineMode  CM 
) [inherited]

Export data into this object using an Import object ("reverse mode").

The input DistObject is always the source of the data redistribution operation, and the *this object is always the target.

If you don't know the difference between forward and reverse mode, then you probably want forward mode. Use the version of doExport() that takes a precomputed Export object in that case.

Parameters:
source[in] The "source" object for redistribution.
importer[in] Precomputed data redistribution plan. Its target Map must be the same as the input DistObject's Map, and its source Map must be the same as this->getMap(). (Note the difference from forward mode.)
CM[in] How to combine incoming data with the same global index.
bool Tpetra::DistObject< Scalar , LocalOrdinal, GlobalOrdinal, Node >::isDistributed ( ) const [inherited]

Whether this is a globally distributed object.

For a definition of "globally distributed" (and its opposite, "locally replicated"), see the documentation of Map's isDistributed() method.

virtual Teuchos::RCP<const Map<LocalOrdinal,GlobalOrdinal,Node> > Tpetra::DistObject< Scalar , LocalOrdinal, GlobalOrdinal, Node >::getMap ( ) const [inline, virtual, inherited]

The Map describing the parallel distribution of this object.

Note that some Tpetra objects might be distributed using multiple Map objects. For example, CrsMatrix has both a row Map and a column Map. It is up to the subclass to decide which Map to use when invoking the DistObject constructor.

Definition at line 316 of file Tpetra_DistObject_decl.hpp.

void Tpetra::DistObject< Scalar , LocalOrdinal, GlobalOrdinal, Node >::print ( std::ostream &  os) const [inherited]

Print this object to the given output stream.

We generally assume that all MPI processes can print to the given stream.

virtual void Tpetra::DistObject< Scalar , LocalOrdinal, GlobalOrdinal, Node >::doTransfer ( const SrcDistObject< Scalar, LocalOrdinal, GlobalOrdinal, Node > &  src,
CombineMode  CM,
size_t  numSameIDs,
const Teuchos::ArrayView< const LocalOrdinal > &  permuteToLIDs,
const Teuchos::ArrayView< const LocalOrdinal > &  permuteFromLIDs,
const Teuchos::ArrayView< const LocalOrdinal > &  remoteLIDs,
const Teuchos::ArrayView< const LocalOrdinal > &  exportLIDs,
Distributor distor,
ReverseOption  revOp 
) [protected, virtual, inherited]

Redistribute data across memory images.

Parameters:
src[in] The source object, to redistribute into the target object, which is *this object.
CM[in] The combine mode that describes how to combine values that map to the same global ID on the same process.
permuteToLIDs[in] See copyAndPermute().
permuteFromLIDs[in] See copyAndPermute().
remoteLIDs[in] List of entries (as local IDs) in the destination object to receive from other processes.
exportLIDs[in] See packAndPrepare().
distor[in/out] The Distributor object that knows how to redistribute data.
revOp[in] Whether to do a forward or reverse mode redistribution.

Friends And Related Function Documentation

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node >
MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > createCopy ( const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &  src) [related, inherited]

Return a deep copy of the MultiVector src.

Regarding Copy or View semantics: The returned MultiVector is always a deep copy of src, but always has the same semantics as src. That is, if src has View semantics, then the returned MultiVector has View semantics, and if src has Copy semantics, then the returned MultiVector has Copy semantics.

You may call src.getCopyOrView () to test the semantics of the input MultiVector src. For example, the following will never trigger an assert:

 MultiVector<double> dst = createCopy (src);
 assert (dst.getCopyOrView () == src.getCopyOrView ());

In the Kokkos refactor version of Tpetra, MultiVector always has View semantics. However, the above remarks still apply.

template<class DS , class DL , class DG , class DN , class SS , class SL , class SG , class SN >
void deep_copy ( MultiVector< DS, DL, DG, DN > &  dst,
const MultiVector< SS, SL, SG, SN > &  src 
) [related, inherited]

Copy the contents of the MultiVector src into dst.

Precondition:
The two inputs must have the same communicator.
The Map of src must be compatible with the Map of dst.
The two inputs must have the same number of columns.

Copy the contents of the MultiVector src into the MultiVector dst. ("Copy the contents" means the same thing as "deep copy.") The two MultiVectors need not necessarily have the same template parameters, but the assignment of their entries must make sense. Furthermore, their Maps must be compatible, that is, the MultiVectors' local dimensions must be the same on all processes.

This method must always be called as a collective operation on all processes over which the multivector is distributed. This is because the method reserves the right to check for compatibility of the two Maps, at least in debug mode, and throw if they are not compatible.


Member Data Documentation

template<class Scalar = double, class LocalOrdinal = int, class GlobalOrdinal = LocalOrdinal, class Node = KokkosClassic::DefaultNode::DefaultNodeType>
KMV Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::lclMV_ [protected, inherited]

The KokkosClassic::MultiVector containing the compute buffer of data.

Definition at line 1135 of file Tpetra_MultiVector_decl.hpp.

template<class Scalar = double, class LocalOrdinal = int, class GlobalOrdinal = LocalOrdinal, class Node = KokkosClassic::DefaultNode::DefaultNodeType>
Array<size_t> Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::whichVectors_ [protected, inherited]

Indices of columns this multivector is viewing.

If this array has nonzero size, then this multivector is a view of another multivector (the "original" multivector). In that case, whichVectors_ contains the indices of the columns of the original multivector. Furthermore, isConstantStride() returns false in this case.

If this array has zero size, then this multivector is not a view of any other multivector. Furthermore, the stride between columns of this multivector is a constant: thus, isConstantStride() returns true.

Definition at line 1149 of file Tpetra_MultiVector_decl.hpp.

template<class Scalar = double, class LocalOrdinal = int, class GlobalOrdinal = LocalOrdinal, class Node = KokkosClassic::DefaultNode::DefaultNodeType>
bool Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::hasViewSemantics_ [protected, inherited]

Whether this MultiVector has view semantics.

"View semantics" means that if this MultiVector is on the right side of an operator=, the left side gets a shallow copy, and acquires view semantics. The Kokkos refactor version of MultiVector only ever has view semantics. The "classic" version of MultiVector currently does not have view semantics by default, but this will change.

You can set this for now by calling one of the constructors that accepts a Teuchos::DataAccess enum value.

Definition at line 1162 of file Tpetra_MultiVector_decl.hpp.

template<class Scalar = double, class LocalOrdinal = int, class GlobalOrdinal = LocalOrdinal, class Node = KokkosClassic::DefaultNode::DefaultNodeType>
ArrayRCP<Scalar> Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::ncview_ [mutable, protected, inherited]

Nonconst host view created in createViewsNonConst().

Definition at line 1309 of file Tpetra_MultiVector_decl.hpp.

template<class Scalar = double, class LocalOrdinal = int, class GlobalOrdinal = LocalOrdinal, class Node = KokkosClassic::DefaultNode::DefaultNodeType>
ArrayRCP<const Scalar> Tpetra::MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >::cview_ [mutable, protected, inherited]

Const host view created in createViews().

Definition at line 1312 of file Tpetra_MultiVector_decl.hpp.

Teuchos::RCP<const Map<LocalOrdinal,GlobalOrdinal,Node> > Tpetra::DistObject< Scalar , LocalOrdinal, GlobalOrdinal, Node >::map_ [protected, inherited]

The Map over which this object is distributed.

Definition at line 611 of file Tpetra_DistObject_decl.hpp.

Teuchos::Array<Scalar > Tpetra::DistObject< Scalar , LocalOrdinal, GlobalOrdinal, Node >::imports_ [protected, inherited]

Buffer into which packed data are imported (received from other processes).

Definition at line 615 of file Tpetra_DistObject_decl.hpp.

Teuchos::Array<size_t> Tpetra::DistObject< Scalar , LocalOrdinal, GlobalOrdinal, Node >::numImportPacketsPerLID_ [protected, inherited]

Number of packets to receive for each receive operation.

This array is used in Distributor::doPosts() (and doReversePosts()) when starting the ireceive operation.

This may be ignored in doTransfer() if constantNumPackets is nonzero, indicating a constant number of packets per LID. (For example, MultiVector sets the constantNumPackets output argument of packAndPrepare() to the number of columns in the multivector.)

Definition at line 627 of file Tpetra_DistObject_decl.hpp.

Teuchos::Array<Scalar > Tpetra::DistObject< Scalar , LocalOrdinal, GlobalOrdinal, Node >::exports_ [protected, inherited]

Buffer from which packed data are exported (sent to other processes).

Definition at line 630 of file Tpetra_DistObject_decl.hpp.

Teuchos::Array<size_t> Tpetra::DistObject< Scalar , LocalOrdinal, GlobalOrdinal, Node >::numExportPacketsPerLID_ [protected, inherited]

Number of packets to send for each send operation.

This array is used in Distributor::doPosts() (and doReversePosts()) for preparing for the send operation.

This may be ignored in doTransfer() if constantNumPackets is nonzero, indicating a constant number of packets per LID. (For example, MultiVector sets the constantNumPackets output argument of packAndPrepare() to the number of columns in the multivector.)

Definition at line 642 of file Tpetra_DistObject_decl.hpp.


The documentation for this class was generated from the following files:
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines