Intrepid
Defines | Functions
http://trilinos.sandia.gov/packages/docs/r10.12/packages/intrepid/example/Drivers/example_05.cpp File Reference

Demonstrate diagonalized mass matrices for H(grad) elements in 1d using Gauss-Legendre quadrature. More...

#include "Intrepid_FunctionSpaceTools.hpp"
#include "Intrepid_FieldContainer.hpp"
#include "Intrepid_CellTools.hpp"
#include "Intrepid_ArrayTools.hpp"
#include "Intrepid_HGRAD_QUAD_Cn_FEM.hpp"
#include "Intrepid_RealSpaceTools.hpp"
#include "Intrepid_DefaultCubatureFactory.hpp"
#include "Intrepid_Utils.hpp"
#include "Epetra_Time.h"
#include "Epetra_Map.h"
#include "Epetra_FECrsMatrix.h"
#include "Epetra_FEVector.h"
#include "Epetra_SerialComm.h"
#include "Teuchos_oblackholestream.hpp"
#include "Teuchos_RCP.hpp"
#include "Teuchos_BLAS.hpp"
#include "Shards_CellTopology.hpp"
#include "EpetraExt_RowMatrixOut.h"
#include "EpetraExt_MultiVectorOut.h"

Go to the source code of this file.

Functions

double evalu (double &x, double &y, double &z)
int evalGradu (double &x, double &y, double &z, double &gradu1, double &gradu2, double &gradu3)
double evalDivGradu (double &x, double &y, double &z)
int main (int argc, char *argv[])

Detailed Description

Demonstrate diagonalized mass matrices for H(grad) elements in 1d using Gauss-Legendre quadrature.

Example building stiffness matrix and right hand side for a Poisson equation using nodal (Hgrad) elements on squares. This uses higher order elements and builds a single reference stiffness matrix that is used for each element. The global matrix is constructed by specifying an upper bound on the number of nonzeros per row, but not preallocating the graph.

Author:
Created by P. Bochev, R. Kirby D. Ridzal and K. Peterson.
Remarks:
Usage

     ./Intrepid_example_Drivers_Example_03.exe max_deg verbose

        int min_deg         - beginning polynomial degree to check 
	int max_deg         - maximum polynomial degree to check
        verbose (optional)  - any character, indicates verbose output

     
Sample command line: checks mass matrix of degree 1,2,3
 ./Intrepid_example_Drivers_Example_03.exe 1 3 
             div grad u = f in Omega
                      u = 0 on Gamma 

     Discrete linear system for nodal coefficients(x):
        
                 Kx = b

            K - HGrad stiffness matrix
            b - right hand side vector 
                
    
Author:
Created by P. Bochev, R. Kirby, D. Ridzal and K. Peterson.
Remarks:
Usage

     ./Intrepid_example_Drivers_Example_05.exe N verbose
        int deg             - polynomial degree
        int NX              - num intervals in x direction (assumed box domain, 0,1)
        int NY              - num intervals in x direction (assumed box domain, 0,1)
        verbose (optional)  - any character, indicates verbose output

     
Sample command line
 ./Intrepid_example_Drivers_Example_05.exe 2 10 10 

Definition in file example_05.cpp.