Teuchos::LAPACK< OrdinalType, ScalarType > Class Template Reference

The Templated LAPACK Wrapper Class. More...

#include <Teuchos_LAPACK.hpp>

Inheritance diagram for Teuchos::LAPACK< OrdinalType, ScalarType >:

Teuchos::SerialDenseSolver< OrdinalType, ScalarType > Teuchos::SerialSpdDenseSolver< OrdinalType, ScalarType > List of all members.

Public Types

typedef Teuchos::ScalarTraits<
ScalarType >::magnitudeType 
MagnitudeType

Public Member Functions

Constructors/Destructors.
 LAPACK (void)
 Default Constructor.
 LAPACK (const LAPACK< OrdinalType, ScalarType > &lapack)
 Copy Constructor.
virtual ~LAPACK (void)
 Destructor.
Symmetric Positive Definite Linear System Routines.
void PTTRF (const OrdinalType n, ScalarType *d, ScalarType *e, OrdinalType *info) const
 Computes the L*D*L' factorization of a Hermitian/symmetric positive definite tridiagonal matrix A.
void PTTRS (const OrdinalType n, const OrdinalType nrhs, const ScalarType *d, const ScalarType *e, ScalarType *B, const OrdinalType ldb, OrdinalType *info) const
 Solves a tridiagonal system A*X=B using the *D*L' factorization of A computed by PTTRF.
void POTRF (const char UPLO, const OrdinalType n, ScalarType *A, const OrdinalType lda, OrdinalType *info) const
 Computes Cholesky factorization of a real symmetric positive definite matrix A.
void POTRS (const char UPLO, const OrdinalType n, const OrdinalType nrhs, const ScalarType *A, const OrdinalType lda, ScalarType *B, const OrdinalType ldb, OrdinalType *info) const
 Solves a system of linear equations A*X=B, where A is a symmetric positive definite matrix factored by POTRF and the nrhs solutions are returned in B.
void POTRI (const char UPLO, const OrdinalType n, ScalarType *A, const OrdinalType lda, OrdinalType *info) const
 Computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A from POTRF.
void POCON (const char UPLO, const OrdinalType n, const ScalarType *A, const OrdinalType lda, const ScalarType anorm, ScalarType *rcond, ScalarType *WORK, OrdinalType *IWORK, OrdinalType *info) const
 Estimates the reciprocal of the condition number (1-norm) of a real symmetric positive definite matrix A using the Cholesky factorization from POTRF.
void POSV (const char UPLO, const OrdinalType n, const OrdinalType nrhs, ScalarType *A, const OrdinalType lda, ScalarType *B, const OrdinalType ldb, OrdinalType *info) const
 Computes the solution to a real system of linear equations A*X=B, where A is a symmetric positive definite matrix and the nrhs solutions are returned in B.
void POEQU (const OrdinalType n, const ScalarType *A, const OrdinalType lda, ScalarType *S, ScalarType *scond, ScalarType *amax, OrdinalType *info) const
 Computes row and column scalings intended to equilibrate a symmetric positive definite matrix A and reduce its condition number (w.r.t. 2-norm).
void PORFS (const char UPLO, const OrdinalType n, const OrdinalType nrhs, ScalarType *A, const OrdinalType lda, const ScalarType *AF, const OrdinalType ldaf, const ScalarType *B, const OrdinalType ldb, ScalarType *X, const OrdinalType ldx, ScalarType *FERR, ScalarType *BERR, ScalarType *WORK, OrdinalType *IWORK, OrdinalType *info) const
 Improves the computed solution to a system of linear equations when the coefficient matrix is symmetric positive definite, and provides error bounds and backward error estimates for the solution.
void POSVX (const char FACT, const char UPLO, const OrdinalType n, const OrdinalType nrhs, ScalarType *A, const OrdinalType lda, ScalarType *AF, const OrdinalType ldaf, char EQUED, ScalarType *S, ScalarType *B, const OrdinalType ldb, ScalarType *X, const OrdinalType ldx, ScalarType *rcond, ScalarType *FERR, ScalarType *BERR, ScalarType *WORK, OrdinalType *IWORK, OrdinalType *info) const
 Uses the Cholesky factorization to compute the solution to a real system of linear equations A*X=B, where A is symmetric positive definite. System can be equilibrated by POEQU and iteratively refined by PORFS, if requested.
General Linear System Routines.
void GELS (const char TRANS, const OrdinalType m, const OrdinalType n, const OrdinalType nrhs, ScalarType *A, const OrdinalType lda, ScalarType *B, const OrdinalType ldb, ScalarType *WORK, const OrdinalType lwork, OrdinalType *info) const
 Solves an over/underdetermined real m by n linear system A using QR or LQ factorization of A.
void GELSS (const OrdinalType m, const OrdinalType n, const OrdinalType nrhs, ScalarType *A, const OrdinalType lda, ScalarType *B, const OrdinalType ldb, ScalarType *S, const ScalarType rcond, OrdinalType *rank, ScalarType *WORK, const OrdinalType lwork, OrdinalType *info) const
 Computes the minimum norm solution to a real m by n linear least squares problem using the singular value decomposition (SVD) of A.
void GGLSE (const OrdinalType m, const OrdinalType n, const OrdinalType p, ScalarType *A, const OrdinalType lda, ScalarType *B, const OrdinalType ldb, ScalarType *C, ScalarType *D, ScalarType *X, ScalarType *WORK, const OrdinalType lwork, OrdinalType *info) const
 Solves the linear equality-constrained least squares (LSE) problem where A is an m by n matrix,B is a p by n matrix C is a given m-vector, and D is a given p-vector.
void GEQRF (const OrdinalType m, const OrdinalType n, ScalarType *A, const OrdinalType lda, ScalarType *TAU, ScalarType *WORK, const OrdinalType lwork, OrdinalType *info) const
 Computes a QR factorization of a general m by n matrix A.
void GETRF (const OrdinalType m, const OrdinalType n, ScalarType *A, const OrdinalType lda, OrdinalType *IPIV, OrdinalType *info) const
 Computes an LU factorization of a general m by n matrix A using partial pivoting with row interchanges.
void GETRS (const char TRANS, const OrdinalType n, const OrdinalType nrhs, const ScalarType *A, const OrdinalType lda, const OrdinalType *IPIV, ScalarType *B, const OrdinalType ldb, OrdinalType *info) const
 Solves a system of linear equations A*X=B or A'*X=B with a general n by n matrix A using the LU factorization computed by GETRF.
void GTTRF (const OrdinalType n, ScalarType *dl, ScalarType *d, ScalarType *du, ScalarType *du2, OrdinalType *IPIV, OrdinalType *info) const
 Computes an LU factorization of a n by n matrix tridiagonal matrix A using partial pivoting with row interchanges.
void GTTRS (const char TRANS, const OrdinalType n, const OrdinalType nrhs, const ScalarType *dl, const ScalarType *d, const ScalarType *du, const ScalarType *du2, const OrdinalType *IPIV, ScalarType *B, const OrdinalType ldb, OrdinalType *info) const
 Solves a system of linear equations A*X=B or A'*X=B or A^H*X=B with a tridiagonal matrix A using the LU factorization computed by GTTRF.
void GETRI (const OrdinalType n, ScalarType *A, const OrdinalType lda, const OrdinalType *IPIV, ScalarType *WORK, const OrdinalType lwork, OrdinalType *info) const
 Computes the inverse of a matrix A using the LU factorization computed by GETRF.
void GECON (const char NORM, const OrdinalType n, const ScalarType *A, const OrdinalType lda, const ScalarType anorm, ScalarType *rcond, ScalarType *WORK, OrdinalType *IWORK, OrdinalType *info) const
 Estimates the reciprocal of the condition number of a general real matrix A, in either the 1-norm or the infinity-norm, using the LU factorization computed by GETRF.
void GESV (const OrdinalType n, const OrdinalType nrhs, ScalarType *A, const OrdinalType lda, OrdinalType *IPIV, ScalarType *B, const OrdinalType ldb, OrdinalType *info) const
 Computes the solution to a real system of linear equations A*X=B, where A is factored through GETRF and the nrhs solutions are computed through GETRS.
void GEEQU (const OrdinalType m, const OrdinalType n, const ScalarType *A, const OrdinalType lda, ScalarType *R, ScalarType *C, ScalarType *rowcond, ScalarType *colcond, ScalarType *amax, OrdinalType *info) const
 Computes row and column scalings intended to equilibrate an m by n matrix A and reduce its condition number.
void GERFS (const char TRANS, const OrdinalType n, const OrdinalType nrhs, const ScalarType *A, const OrdinalType lda, const ScalarType *AF, const OrdinalType ldaf, const OrdinalType *IPIV, const ScalarType *B, const OrdinalType ldb, ScalarType *X, const OrdinalType ldx, ScalarType *FERR, ScalarType *BERR, ScalarType *WORK, OrdinalType *IWORK, OrdinalType *info) const
 Improves the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solution. Use after GETRF/GETRS.
void GESVX (const char FACT, const char TRANS, const OrdinalType n, const OrdinalType nrhs, ScalarType *A, const OrdinalType lda, ScalarType *AF, const OrdinalType ldaf, OrdinalType *IPIV, char EQUED, ScalarType *R, ScalarType *C, ScalarType *B, const OrdinalType ldb, ScalarType *X, const OrdinalType ldx, ScalarType *rcond, ScalarType *FERR, ScalarType *BERR, ScalarType *WORK, OrdinalType *IWORK, OrdinalType *info) const
 Uses the LU factorization to compute the solution to a real system of linear equations A*X=B, returning error bounds on the solution and a condition estimate.
void SYTRD (const char UPLO, const OrdinalType n, ScalarType *A, const OrdinalType lda, ScalarType *D, ScalarType *E, ScalarType *TAU, ScalarType *WORK, const OrdinalType lwork, OrdinalType *info) const
 Reduces a real symmetric matrix A to tridiagonal form by orthogonal similarity transformations.
void GEHRD (const OrdinalType n, const OrdinalType ilo, const OrdinalType ihi, ScalarType *A, const OrdinalType lda, ScalarType *TAU, ScalarType *WORK, const OrdinalType lwork, OrdinalType *info) const
 Reduces a real general matrix A to upper Hessenberg form by orthogonal similarity transformations.
void TRTRS (const char UPLO, const char TRANS, const char DIAG, const OrdinalType n, const OrdinalType nrhs, const ScalarType *A, const OrdinalType lda, ScalarType *B, const OrdinalType ldb, OrdinalType *info) const
 Solves a triangular linear system of the form A*X=B or A**T*X=B, where A is a triangular matrix.
void TRTRI (const char UPLO, const char DIAG, const OrdinalType n, const ScalarType *A, const OrdinalType lda, OrdinalType *info) const
 Computes the inverse of an upper or lower triangular matrix A.
Symmetric Eigenproblem Routines
void SPEV (const char JOBZ, const char UPLO, const OrdinalType n, ScalarType *AP, ScalarType *W, ScalarType *Z, const OrdinalType ldz, ScalarType *WORK, OrdinalType *info) const
 Computes the eigenvalues and, optionally, eigenvectors of a symmetric n by n matrix A in packed storage.
void SYEV (const char JOBZ, const char UPLO, const OrdinalType n, ScalarType *A, const OrdinalType lda, ScalarType *W, ScalarType *WORK, const OrdinalType lwork, OrdinalType *info) const
 Computes all the eigenvalues and, optionally, eigenvectors of a symmetric n by n matrix A.
void SYGV (const OrdinalType itype, const char JOBZ, const char UPLO, const OrdinalType n, ScalarType *A, const OrdinalType lda, ScalarType *B, const OrdinalType ldb, ScalarType *W, ScalarType *WORK, const OrdinalType lwork, OrdinalType *info) const
 Computes all the eigenvalues and, optionally, eigenvectors of a symmetric n by n matrix pencil {A,B}, where A is symmetric and B is symmetric positive-definite.
void HEEV (const char JOBZ, const char UPLO, const OrdinalType n, ScalarType *A, const OrdinalType lda, MagnitudeType *W, ScalarType *WORK, const OrdinalType lwork, MagnitudeType *RWORK, OrdinalType *info) const
 Computes all the eigenvalues and, optionally, eigenvectors of a Hermitian n by n matrix A.
void HEGV (const OrdinalType itype, const char JOBZ, const char UPLO, const OrdinalType n, ScalarType *A, const OrdinalType lda, ScalarType *B, const OrdinalType ldb, MagnitudeType *W, ScalarType *WORK, const OrdinalType lwork, MagnitudeType *RWORK, OrdinalType *info) const
 Computes all the eigenvalues and, optionally, eigenvectors of a generalized Hermitian-definite n by n matrix pencil {A,B}, where A is Hermitian and B is Hermitian positive-definite.
void STEQR (const char COMPZ, const OrdinalType n, ScalarType *D, ScalarType *E, ScalarType *Z, const OrdinalType ldz, ScalarType *WORK, OrdinalType *info) const
 Computes the eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal n by n matrix A using implicit QL/QR. The eigenvectors can only be computed if A was reduced to tridiagonal form by SYTRD.
Non-Hermitian Eigenproblem Routines
void HSEQR (const char JOB, const char COMPZ, const OrdinalType n, const OrdinalType ilo, const OrdinalType ihi, ScalarType *H, const OrdinalType ldh, ScalarType *WR, ScalarType *WI, ScalarType *Z, const OrdinalType ldz, ScalarType *WORK, const OrdinalType lwork, OrdinalType *info) const
 Computes the eigenvalues of a real upper Hessenberg matrix H and, optionally, the matrices T and Z from the Schur decomposition, where T is an upper quasi-triangular matrix and Z contains the Schur vectors.
void GEES (const char JOBVS, const char SORT, OrdinalType(*ptr2func)(ScalarType *, ScalarType *), const OrdinalType n, ScalarType *A, const OrdinalType lda, OrdinalType *sdim, ScalarType *WR, ScalarType *WI, ScalarType *VS, const OrdinalType ldvs, ScalarType *WORK, const OrdinalType lwork, OrdinalType *BWORK, OrdinalType *info) const
void GEES (const char JOBVS, const char SORT, OrdinalType(*ptr2func)(ScalarType *), const OrdinalType n, ScalarType *A, const OrdinalType lda, OrdinalType *sdim, ScalarType *W, ScalarType *VS, const OrdinalType ldvs, ScalarType *WORK, const OrdinalType lwork, MagnitudeType *RWORK, OrdinalType *BWORK, OrdinalType *info) const
void GEES (const char JOBVS, const OrdinalType n, ScalarType *A, const OrdinalType lda, OrdinalType *sdim, MagnitudeType *WR, MagnitudeType *WI, ScalarType *VS, const OrdinalType ldvs, ScalarType *WORK, const OrdinalType lwork, MagnitudeType *RWORK, OrdinalType *BWORK, OrdinalType *info) const
void GEEV (const char JOBVL, const char JOBVR, const OrdinalType n, ScalarType *A, const OrdinalType lda, ScalarType *WR, ScalarType *WI, ScalarType *VL, const OrdinalType ldvl, ScalarType *VR, const OrdinalType ldvr, ScalarType *WORK, const OrdinalType lwork, OrdinalType *info) const
 Computes for an n by n real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors.
void GGEVX (const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const OrdinalType n, ScalarType *A, const OrdinalType lda, ScalarType *B, const OrdinalType ldb, MagnitudeType *ALPHAR, MagnitudeType *ALPHAI, ScalarType *BETA, ScalarType *VL, const OrdinalType ldvl, ScalarType *VR, const OrdinalType ldvr, OrdinalType *ilo, OrdinalType *ihi, MagnitudeType *LSCALE, MagnitudeType *RSCALE, MagnitudeType *abnrm, MagnitudeType *bbnrm, MagnitudeType *RCONDE, MagnitudeType *RCONDV, ScalarType *WORK, const OrdinalType lwork, OrdinalType *IWORK, OrdinalType *BWORK, OrdinalType *info) const
 Computes for a pair of n by n nonsymmetric matrices (A,B) the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors.
void GGEV (const char JOBVL, const char JOBVR, const OrdinalType n, ScalarType *A, const OrdinalType lda, ScalarType *B, const OrdinalType ldb, MagnitudeType *ALPHAR, MagnitudeType *ALPHAI, ScalarType *BETA, ScalarType *VL, const OrdinalType ldvl, ScalarType *VR, const OrdinalType ldvr, ScalarType *WORK, const OrdinalType lwork, OrdinalType *info) const
Singular Value Decompositon Routines
void GESVD (const char JOBU, const char JOBVT, const OrdinalType m, const OrdinalType n, ScalarType *A, const OrdinalType lda, MagnitudeType *S, ScalarType *U, const OrdinalType ldu, ScalarType *V, const OrdinalType ldv, ScalarType *WORK, const OrdinalType lwork, MagnitudeType *RWORK, OrdinalType *info) const
 Computes the singular values (and optionally, vectors) of a real matrix A.
Orthogonal matrix routines
void ORMQR (const char SIDE, const char TRANS, const OrdinalType m, const OrdinalType n, const OrdinalType k, ScalarType *A, const OrdinalType lda, const ScalarType *TAU, ScalarType *C, const OrdinalType ldc, ScalarType *WORK, const OrdinalType lwork, OrdinalType *info) const
 Overwrites the general real matrix m by n matrix C with the product of C and Q, which is the product of k elementary reflectors, as returned by GEQRF.
void ORGQR (const OrdinalType m, const OrdinalType n, const OrdinalType k, ScalarType *A, const OrdinalType lda, const ScalarType *TAU, ScalarType *WORK, const OrdinalType lwork, OrdinalType *info) const
 Generates an m by n matrix Q with orthonormal columns which is defined as the first
columns of a product of k elementary reflectors of order m, as returned by GEQRF.
void UNGQR (const OrdinalType m, const OrdinalType n, const OrdinalType k, ScalarType *A, const OrdinalType lda, const ScalarType *TAU, ScalarType *WORK, const OrdinalType lwork, OrdinalType *info) const
 Generates an m by n matrix Q with orthonormal columns which is defined as the first
columns of a product of k elementary reflectors of order m, as returned by GEQRF.
void ORGHR (const OrdinalType n, const OrdinalType ilo, const OrdinalType ihi, ScalarType *A, const OrdinalType lda, const ScalarType *TAU, ScalarType *WORK, const OrdinalType lwork, OrdinalType *info) const
 Generates a real orthogonal matrix Q which is the product of ihi-ilo elementary reflectors of order n, as returned by GEHRD. On return Q is stored in A.
void ORMHR (const char SIDE, const char TRANS, const OrdinalType m, const OrdinalType n, const OrdinalType ilo, const OrdinalType ihi, const ScalarType *A, const OrdinalType lda, const ScalarType *TAU, ScalarType *C, const OrdinalType ldc, ScalarType *WORK, const OrdinalType lwork, OrdinalType *info) const
 Overwrites the general real m by n matrix C with the product of C and Q, which is a product of ihi-ilo elementary reflectors, as returned by GEHRD.
Triangular Matrix Routines
void TREVC (const char SIDE, const char HOWMNY, OrdinalType *select, const OrdinalType n, const ScalarType *T, const OrdinalType ldt, ScalarType *VL, const OrdinalType ldvl, ScalarType *VR, const OrdinalType ldvr, const OrdinalType mm, OrdinalType *m, ScalarType *WORK, OrdinalType *info) const
void TREVC (const char SIDE, const OrdinalType n, const ScalarType *T, const OrdinalType ldt, ScalarType *VL, const OrdinalType ldvl, ScalarType *VR, const OrdinalType ldvr, const OrdinalType mm, OrdinalType *m, ScalarType *WORK, MagnitudeType *RWORK, OrdinalType *info) const
void TREXC (const char COMPQ, const OrdinalType n, ScalarType *T, const OrdinalType ldt, ScalarType *Q, const OrdinalType ldq, OrdinalType ifst, OrdinalType ilst, ScalarType *WORK, OrdinalType *info) const
Rotation/Reflection generators
void LARTG (const ScalarType f, const ScalarType g, MagnitudeType *c, ScalarType *s, ScalarType *r) const
 Generates a plane rotation that zeros out the second component of the input std::vector.
void LARFG (const OrdinalType n, ScalarType *alpha, ScalarType *x, const OrdinalType incx, ScalarType *tau) const
 Generates an elementary reflector of order n that zeros out the last n-1 components of the input std::vector.
Random number generators
ScalarType LARND (const OrdinalType idist, OrdinalType *seed) const
 Returns a random number from a uniform or normal distribution.
void LARNV (const OrdinalType idist, OrdinalType *seed, const OrdinalType n, ScalarType *v) const
 Returns a std::vector of random numbers from a chosen distribution.
Machine Characteristics Routines.
ScalarType LAMCH (const char CMACH) const
 Determines machine parameters for floating point characteristics.
OrdinalType ILAENV (const OrdinalType ispec, const std::string &NAME, const std::string &OPTS, const OrdinalType N1=-1, const OrdinalType N2=-1, const OrdinalType N3=-1, const OrdinalType N4=-1) const
 Chooses problem-dependent parameters for the local environment.
Miscellaneous Utilities.
ScalarType LAPY2 (const ScalarType x, const ScalarType y) const
 Computes x^2 + y^2 safely, to avoid overflow.

Detailed Description

template<typename OrdinalType, typename ScalarType>
class Teuchos::LAPACK< OrdinalType, ScalarType >

The Templated LAPACK Wrapper Class.

The Teuchos::LAPACK class is a wrapper that encapsulates LAPACK (Linear Algebra Package). LAPACK provides portable, high- performance implementations of linear, eigen, SVD, etc solvers.

The standard LAPACK interface is Fortran-specific. Unfortunately, the interface between C++ and Fortran is not standard across all computer platforms. The Teuchos::LAPACK class provides C++ wrappers for the LAPACK kernels in order to insulate the rest of Teuchos from the details of C++ to Fortran translation. A Teuchos::LAPACK object is essentially nothing, but allows access to the LAPACK wrapper functions.

Teuchos::LAPACK is a serial interface only. This is appropriate since the standard LAPACK are only specified for serial execution (or shared memory parallel).

Note:
  1. These templates are specialized to use the Fortran LAPACK routines for scalar types float and double.

  2. If Teuchos is configured with --enable-teuchos-stdcomplex then these templates are specialized for scalar types std::complex<float> and std::complex<double> also.

  3. A short description is given for each method. For more detailed documentation, see the LAPACK website (http://www.netlib.org/lapack/ ).
Examples:

LAPACK/cxx_main.cpp.

Definition at line 111 of file Teuchos_LAPACK.hpp.


Constructor & Destructor Documentation

template<typename OrdinalType, typename ScalarType>
Teuchos::LAPACK< OrdinalType, ScalarType >::LAPACK ( void   )  [inline]

Default Constructor.

Definition at line 121 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
Teuchos::LAPACK< OrdinalType, ScalarType >::LAPACK ( const LAPACK< OrdinalType, ScalarType > &  lapack  )  [inline]

Copy Constructor.

Definition at line 124 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
virtual Teuchos::LAPACK< OrdinalType, ScalarType >::~LAPACK ( void   )  [inline, virtual]

Destructor.

Definition at line 127 of file Teuchos_LAPACK.hpp.


Member Function Documentation

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::PTTRF ( const OrdinalType  n,
ScalarType *  d,
ScalarType *  e,
OrdinalType *  info 
) const

Computes the L*D*L' factorization of a Hermitian/symmetric positive definite tridiagonal matrix A.

Definition at line 393 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::PTTRS ( const OrdinalType  n,
const OrdinalType  nrhs,
const ScalarType *  d,
const ScalarType *  e,
ScalarType *  B,
const OrdinalType  ldb,
OrdinalType *  info 
) const

Solves a tridiagonal system A*X=B using the *D*L' factorization of A computed by PTTRF.

Definition at line 399 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::POTRF ( const char  UPLO,
const OrdinalType  n,
ScalarType *  A,
const OrdinalType  lda,
OrdinalType *  info 
) const

Computes Cholesky factorization of a real symmetric positive definite matrix A.

Definition at line 405 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::POTRS ( const char  UPLO,
const OrdinalType  n,
const OrdinalType  nrhs,
const ScalarType *  A,
const OrdinalType  lda,
ScalarType *  B,
const OrdinalType  ldb,
OrdinalType *  info 
) const

Solves a system of linear equations A*X=B, where A is a symmetric positive definite matrix factored by POTRF and the nrhs solutions are returned in B.

Definition at line 411 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::POTRI ( const char  UPLO,
const OrdinalType  n,
ScalarType *  A,
const OrdinalType  lda,
OrdinalType *  info 
) const

Computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A from POTRF.

Definition at line 417 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::POCON ( const char  UPLO,
const OrdinalType  n,
const ScalarType *  A,
const OrdinalType  lda,
const ScalarType  anorm,
ScalarType *  rcond,
ScalarType *  WORK,
OrdinalType *  IWORK,
OrdinalType *  info 
) const

Estimates the reciprocal of the condition number (1-norm) of a real symmetric positive definite matrix A using the Cholesky factorization from POTRF.

Definition at line 423 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::POSV ( const char  UPLO,
const OrdinalType  n,
const OrdinalType  nrhs,
ScalarType *  A,
const OrdinalType  lda,
ScalarType *  B,
const OrdinalType  ldb,
OrdinalType *  info 
) const

Computes the solution to a real system of linear equations A*X=B, where A is a symmetric positive definite matrix and the nrhs solutions are returned in B.

Definition at line 429 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::POEQU ( const OrdinalType  n,
const ScalarType *  A,
const OrdinalType  lda,
ScalarType *  S,
ScalarType *  scond,
ScalarType *  amax,
OrdinalType *  info 
) const

Computes row and column scalings intended to equilibrate a symmetric positive definite matrix A and reduce its condition number (w.r.t. 2-norm).

Definition at line 435 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::PORFS ( const char  UPLO,
const OrdinalType  n,
const OrdinalType  nrhs,
ScalarType *  A,
const OrdinalType  lda,
const ScalarType *  AF,
const OrdinalType  ldaf,
const ScalarType *  B,
const OrdinalType  ldb,
ScalarType *  X,
const OrdinalType  ldx,
ScalarType *  FERR,
ScalarType *  BERR,
ScalarType *  WORK,
OrdinalType *  IWORK,
OrdinalType *  info 
) const

Improves the computed solution to a system of linear equations when the coefficient matrix is symmetric positive definite, and provides error bounds and backward error estimates for the solution.

Definition at line 441 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::POSVX ( const char  FACT,
const char  UPLO,
const OrdinalType  n,
const OrdinalType  nrhs,
ScalarType *  A,
const OrdinalType  lda,
ScalarType *  AF,
const OrdinalType  ldaf,
char  EQUED,
ScalarType *  S,
ScalarType *  B,
const OrdinalType  ldb,
ScalarType *  X,
const OrdinalType  ldx,
ScalarType *  rcond,
ScalarType *  FERR,
ScalarType *  BERR,
ScalarType *  WORK,
OrdinalType *  IWORK,
OrdinalType *  info 
) const

Uses the Cholesky factorization to compute the solution to a real system of linear equations A*X=B, where A is symmetric positive definite. System can be equilibrated by POEQU and iteratively refined by PORFS, if requested.

Definition at line 447 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::GELS ( const char  TRANS,
const OrdinalType  m,
const OrdinalType  n,
const OrdinalType  nrhs,
ScalarType *  A,
const OrdinalType  lda,
ScalarType *  B,
const OrdinalType  ldb,
ScalarType *  WORK,
const OrdinalType  lwork,
OrdinalType *  info 
) const

Solves an over/underdetermined real m by n linear system A using QR or LQ factorization of A.

Definition at line 453 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::GELSS ( const OrdinalType  m,
const OrdinalType  n,
const OrdinalType  nrhs,
ScalarType *  A,
const OrdinalType  lda,
ScalarType *  B,
const OrdinalType  ldb,
ScalarType *  S,
const ScalarType  rcond,
OrdinalType *  rank,
ScalarType *  WORK,
const OrdinalType  lwork,
OrdinalType *  info 
) const

Computes the minimum norm solution to a real m by n linear least squares problem using the singular value decomposition (SVD) of A.

Definition at line 459 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::GGLSE ( const OrdinalType  m,
const OrdinalType  n,
const OrdinalType  p,
ScalarType *  A,
const OrdinalType  lda,
ScalarType *  B,
const OrdinalType  ldb,
ScalarType *  C,
ScalarType *  D,
ScalarType *  X,
ScalarType *  WORK,
const OrdinalType  lwork,
OrdinalType *  info 
) const

Solves the linear equality-constrained least squares (LSE) problem where A is an m by n matrix,B is a p by n matrix C is a given m-vector, and D is a given p-vector.

Definition at line 465 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::GEQRF ( const OrdinalType  m,
const OrdinalType  n,
ScalarType *  A,
const OrdinalType  lda,
ScalarType *  TAU,
ScalarType *  WORK,
const OrdinalType  lwork,
OrdinalType *  info 
) const

Computes a QR factorization of a general m by n matrix A.

Definition at line 471 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::GETRF ( const OrdinalType  m,
const OrdinalType  n,
ScalarType *  A,
const OrdinalType  lda,
OrdinalType *  IPIV,
OrdinalType *  info 
) const

Computes an LU factorization of a general m by n matrix A using partial pivoting with row interchanges.

Definition at line 477 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::GETRS ( const char  TRANS,
const OrdinalType  n,
const OrdinalType  nrhs,
const ScalarType *  A,
const OrdinalType  lda,
const OrdinalType *  IPIV,
ScalarType *  B,
const OrdinalType  ldb,
OrdinalType *  info 
) const

Solves a system of linear equations A*X=B or A'*X=B with a general n by n matrix A using the LU factorization computed by GETRF.

Definition at line 483 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::GTTRF ( const OrdinalType  n,
ScalarType *  dl,
ScalarType *  d,
ScalarType *  du,
ScalarType *  du2,
OrdinalType *  IPIV,
OrdinalType *  info 
) const

Computes an LU factorization of a n by n matrix tridiagonal matrix A using partial pivoting with row interchanges.

Definition at line 489 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::GTTRS ( const char  TRANS,
const OrdinalType  n,
const OrdinalType  nrhs,
const ScalarType *  dl,
const ScalarType *  d,
const ScalarType *  du,
const ScalarType *  du2,
const OrdinalType *  IPIV,
ScalarType *  B,
const OrdinalType  ldb,
OrdinalType *  info 
) const

Solves a system of linear equations A*X=B or A'*X=B or A^H*X=B with a tridiagonal matrix A using the LU factorization computed by GTTRF.

Definition at line 495 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::GETRI ( const OrdinalType  n,
ScalarType *  A,
const OrdinalType  lda,
const OrdinalType *  IPIV,
ScalarType *  WORK,
const OrdinalType  lwork,
OrdinalType *  info 
) const

Computes the inverse of a matrix A using the LU factorization computed by GETRF.

Definition at line 501 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::GECON ( const char  NORM,
const OrdinalType  n,
const ScalarType *  A,
const OrdinalType  lda,
const ScalarType  anorm,
ScalarType *  rcond,
ScalarType *  WORK,
OrdinalType *  IWORK,
OrdinalType *  info 
) const

Estimates the reciprocal of the condition number of a general real matrix A, in either the 1-norm or the infinity-norm, using the LU factorization computed by GETRF.

Definition at line 507 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::GESV ( const OrdinalType  n,
const OrdinalType  nrhs,
ScalarType *  A,
const OrdinalType  lda,
OrdinalType *  IPIV,
ScalarType *  B,
const OrdinalType  ldb,
OrdinalType *  info 
) const

Computes the solution to a real system of linear equations A*X=B, where A is factored through GETRF and the nrhs solutions are computed through GETRS.

Definition at line 513 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::GEEQU ( const OrdinalType  m,
const OrdinalType  n,
const ScalarType *  A,
const OrdinalType  lda,
ScalarType *  R,
ScalarType *  C,
ScalarType *  rowcond,
ScalarType *  colcond,
ScalarType *  amax,
OrdinalType *  info 
) const

Computes row and column scalings intended to equilibrate an m by n matrix A and reduce its condition number.

Definition at line 519 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::GERFS ( const char  TRANS,
const OrdinalType  n,
const OrdinalType  nrhs,
const ScalarType *  A,
const OrdinalType  lda,
const ScalarType *  AF,
const OrdinalType  ldaf,
const OrdinalType *  IPIV,
const ScalarType *  B,
const OrdinalType  ldb,
ScalarType *  X,
const OrdinalType  ldx,
ScalarType *  FERR,
ScalarType *  BERR,
ScalarType *  WORK,
OrdinalType *  IWORK,
OrdinalType *  info 
) const

Improves the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solution. Use after GETRF/GETRS.

Definition at line 525 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::GESVX ( const char  FACT,
const char  TRANS,
const OrdinalType  n,
const OrdinalType  nrhs,
ScalarType *  A,
const OrdinalType  lda,
ScalarType *  AF,
const OrdinalType  ldaf,
OrdinalType *  IPIV,
char  EQUED,
ScalarType *  R,
ScalarType *  C,
ScalarType *  B,
const OrdinalType  ldb,
ScalarType *  X,
const OrdinalType  ldx,
ScalarType *  rcond,
ScalarType *  FERR,
ScalarType *  BERR,
ScalarType *  WORK,
OrdinalType *  IWORK,
OrdinalType *  info 
) const

Uses the LU factorization to compute the solution to a real system of linear equations A*X=B, returning error bounds on the solution and a condition estimate.

Definition at line 531 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::SYTRD ( const char  UPLO,
const OrdinalType  n,
ScalarType *  A,
const OrdinalType  lda,
ScalarType *  D,
ScalarType *  E,
ScalarType *  TAU,
ScalarType *  WORK,
const OrdinalType  lwork,
OrdinalType *  info 
) const

Reduces a real symmetric matrix A to tridiagonal form by orthogonal similarity transformations.

Note:
This method is not defined when the ScalarType is std::complex<float> or std::complex<double>.

Definition at line 537 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::GEHRD ( const OrdinalType  n,
const OrdinalType  ilo,
const OrdinalType  ihi,
ScalarType *  A,
const OrdinalType  lda,
ScalarType *  TAU,
ScalarType *  WORK,
const OrdinalType  lwork,
OrdinalType *  info 
) const

Reduces a real general matrix A to upper Hessenberg form by orthogonal similarity transformations.

Definition at line 543 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::TRTRS ( const char  UPLO,
const char  TRANS,
const char  DIAG,
const OrdinalType  n,
const OrdinalType  nrhs,
const ScalarType *  A,
const OrdinalType  lda,
ScalarType *  B,
const OrdinalType  ldb,
OrdinalType *  info 
) const

Solves a triangular linear system of the form A*X=B or A**T*X=B, where A is a triangular matrix.

Definition at line 549 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::TRTRI ( const char  UPLO,
const char  DIAG,
const OrdinalType  n,
const ScalarType *  A,
const OrdinalType  lda,
OrdinalType *  info 
) const

Computes the inverse of an upper or lower triangular matrix A.

Definition at line 555 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::SPEV ( const char  JOBZ,
const char  UPLO,
const OrdinalType  n,
ScalarType *  AP,
ScalarType *  W,
ScalarType *  Z,
const OrdinalType  ldz,
ScalarType *  WORK,
OrdinalType *  info 
) const

Computes the eigenvalues and, optionally, eigenvectors of a symmetric n by n matrix A in packed storage.

Note:
This method is not defined when the ScalarType is std::complex<float> or std::complex<double>.

Definition at line 561 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::SYEV ( const char  JOBZ,
const char  UPLO,
const OrdinalType  n,
ScalarType *  A,
const OrdinalType  lda,
ScalarType *  W,
ScalarType *  WORK,
const OrdinalType  lwork,
OrdinalType *  info 
) const

Computes all the eigenvalues and, optionally, eigenvectors of a symmetric n by n matrix A.

Note:
This method is not defined when the ScalarType is std::complex<float> or std::complex<double>.

Definition at line 567 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::SYGV ( const OrdinalType  itype,
const char  JOBZ,
const char  UPLO,
const OrdinalType  n,
ScalarType *  A,
const OrdinalType  lda,
ScalarType *  B,
const OrdinalType  ldb,
ScalarType *  W,
ScalarType *  WORK,
const OrdinalType  lwork,
OrdinalType *  info 
) const

Computes all the eigenvalues and, optionally, eigenvectors of a symmetric n by n matrix pencil {A,B}, where A is symmetric and B is symmetric positive-definite.

Note:
This method is not defined when the ScalarType is std::complex<float> or std::complex<double>.

Definition at line 573 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::HEEV ( const char  JOBZ,
const char  UPLO,
const OrdinalType  n,
ScalarType *  A,
const OrdinalType  lda,
MagnitudeType W,
ScalarType *  WORK,
const OrdinalType  lwork,
MagnitudeType RWORK,
OrdinalType *  info 
) const

Computes all the eigenvalues and, optionally, eigenvectors of a Hermitian n by n matrix A.

Note:
This method will call SYEV when ScalarType is float or double.

Definition at line 579 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::HEGV ( const OrdinalType  itype,
const char  JOBZ,
const char  UPLO,
const OrdinalType  n,
ScalarType *  A,
const OrdinalType  lda,
ScalarType *  B,
const OrdinalType  ldb,
MagnitudeType W,
ScalarType *  WORK,
const OrdinalType  lwork,
MagnitudeType RWORK,
OrdinalType *  info 
) const

Computes all the eigenvalues and, optionally, eigenvectors of a generalized Hermitian-definite n by n matrix pencil {A,B}, where A is Hermitian and B is Hermitian positive-definite.

Note:
This method will call SYGV when ScalarType is float or double.

Definition at line 585 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::STEQR ( const char  COMPZ,
const OrdinalType  n,
ScalarType *  D,
ScalarType *  E,
ScalarType *  Z,
const OrdinalType  ldz,
ScalarType *  WORK,
OrdinalType *  info 
) const

Computes the eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal n by n matrix A using implicit QL/QR. The eigenvectors can only be computed if A was reduced to tridiagonal form by SYTRD.

Definition at line 591 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::HSEQR ( const char  JOB,
const char  COMPZ,
const OrdinalType  n,
const OrdinalType  ilo,
const OrdinalType  ihi,
ScalarType *  H,
const OrdinalType  ldh,
ScalarType *  WR,
ScalarType *  WI,
ScalarType *  Z,
const OrdinalType  ldz,
ScalarType *  WORK,
const OrdinalType  lwork,
OrdinalType *  info 
) const

Computes the eigenvalues of a real upper Hessenberg matrix H and, optionally, the matrices T and Z from the Schur decomposition, where T is an upper quasi-triangular matrix and Z contains the Schur vectors.

Definition at line 597 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::GEES ( const char  JOBVS,
const char  SORT,
OrdinalType(*)(ScalarType *, ScalarType *)  ptr2func,
const OrdinalType  n,
ScalarType *  A,
const OrdinalType  lda,
OrdinalType *  sdim,
ScalarType *  WR,
ScalarType *  WI,
ScalarType *  VS,
const OrdinalType  ldvs,
ScalarType *  WORK,
const OrdinalType  lwork,
OrdinalType *  BWORK,
OrdinalType *  info 
) const

Computes for an n by n nonsymmetric matrix A, the eigenvalues, the Schur form T, and, optionally, the matrix of Schur vectors Z. When ScalarType is float or double, the real Schur form is computed.

Note:
(This is the version used for float and double, where select requires two arguments to represent a std::complex eigenvalue.)

Definition at line 603 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::GEES ( const char  JOBVS,
const char  SORT,
OrdinalType(*)(ScalarType *)  ptr2func,
const OrdinalType  n,
ScalarType *  A,
const OrdinalType  lda,
OrdinalType *  sdim,
ScalarType *  W,
ScalarType *  VS,
const OrdinalType  ldvs,
ScalarType *  WORK,
const OrdinalType  lwork,
MagnitudeType RWORK,
OrdinalType *  BWORK,
OrdinalType *  info 
) const

Computes for an n by n nonsymmetric matrix A, the eigenvalues, the Schur form T, and, optionally, the matrix of Schur vectors Z. When ScalarType is float or double, the real Schur form is computed.

Note:
(This is the version used for std::complex<float> and std::complex<double>, where select requires one arguments to represent a std::complex eigenvalue.)

Definition at line 609 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::GEES ( const char  JOBVS,
const OrdinalType  n,
ScalarType *  A,
const OrdinalType  lda,
OrdinalType *  sdim,
MagnitudeType WR,
MagnitudeType WI,
ScalarType *  VS,
const OrdinalType  ldvs,
ScalarType *  WORK,
const OrdinalType  lwork,
MagnitudeType RWORK,
OrdinalType *  BWORK,
OrdinalType *  info 
) const

Computes for an n by n nonsymmetric matrix A, the eigenvalues, the Schur form T, and, optionally, the matrix of Schur vectors Z. When ScalarType is float or double, the real Schur form is computed.

Note:
(This is the version used for any ScalarType, when the user doesn't want to enable the sorting functionality.)

Definition at line 615 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::GEEV ( const char  JOBVL,
const char  JOBVR,
const OrdinalType  n,
ScalarType *  A,
const OrdinalType  lda,
ScalarType *  WR,
ScalarType *  WI,
ScalarType *  VL,
const OrdinalType  ldvl,
ScalarType *  VR,
const OrdinalType  ldvr,
ScalarType *  WORK,
const OrdinalType  lwork,
OrdinalType *  info 
) const

Computes for an n by n real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors.

Definition at line 621 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::GGEVX ( const char  BALANC,
const char  JOBVL,
const char  JOBVR,
const char  SENSE,
const OrdinalType  n,
ScalarType *  A,
const OrdinalType  lda,
ScalarType *  B,
const OrdinalType  ldb,
MagnitudeType ALPHAR,
MagnitudeType ALPHAI,
ScalarType *  BETA,
ScalarType *  VL,
const OrdinalType  ldvl,
ScalarType *  VR,
const OrdinalType  ldvr,
OrdinalType *  ilo,
OrdinalType *  ihi,
MagnitudeType LSCALE,
MagnitudeType RSCALE,
MagnitudeType abnrm,
MagnitudeType bbnrm,
MagnitudeType RCONDE,
MagnitudeType RCONDV,
ScalarType *  WORK,
const OrdinalType  lwork,
OrdinalType *  IWORK,
OrdinalType *  BWORK,
OrdinalType *  info 
) const

Computes for a pair of n by n nonsymmetric matrices (A,B) the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors.

Definition at line 633 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::GGEV ( const char  JOBVL,
const char  JOBVR,
const OrdinalType  n,
ScalarType *  A,
const OrdinalType  lda,
ScalarType *  B,
const OrdinalType  ldb,
MagnitudeType ALPHAR,
MagnitudeType ALPHAI,
ScalarType *  BETA,
ScalarType *  VL,
const OrdinalType  ldvl,
ScalarType *  VR,
const OrdinalType  ldvr,
ScalarType *  WORK,
const OrdinalType  lwork,
OrdinalType *  info 
) const

Computes for a pair of n by n nonsymmetric matrices (A,B) the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors.

Note:
(This is the function is only defined for ScalarType = float or double.)

Definition at line 639 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::GESVD ( const char  JOBU,
const char  JOBVT,
const OrdinalType  m,
const OrdinalType  n,
ScalarType *  A,
const OrdinalType  lda,
MagnitudeType S,
ScalarType *  U,
const OrdinalType  ldu,
ScalarType *  V,
const OrdinalType  ldv,
ScalarType *  WORK,
const OrdinalType  lwork,
MagnitudeType RWORK,
OrdinalType *  info 
) const

Computes the singular values (and optionally, vectors) of a real matrix A.

Definition at line 627 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::ORMQR ( const char  SIDE,
const char  TRANS,
const OrdinalType  m,
const OrdinalType  n,
const OrdinalType  k,
ScalarType *  A,
const OrdinalType  lda,
const ScalarType *  TAU,
ScalarType *  C,
const OrdinalType  ldc,
ScalarType *  WORK,
const OrdinalType  lwork,
OrdinalType *  info 
) const

Overwrites the general real matrix m by n matrix C with the product of C and Q, which is the product of k elementary reflectors, as returned by GEQRF.

Note:
This method is not defined when the ScalarType is std::complex<float> or std::complex<double>.

Definition at line 645 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::ORGQR ( const OrdinalType  m,
const OrdinalType  n,
const OrdinalType  k,
ScalarType *  A,
const OrdinalType  lda,
const ScalarType *  TAU,
ScalarType *  WORK,
const OrdinalType  lwork,
OrdinalType *  info 
) const

Generates an m by n matrix Q with orthonormal columns which is defined as the first
columns of a product of k elementary reflectors of order m, as returned by GEQRF.

Note:
This method is not defined when the ScalarType is std::complex<float> or std::complex<double>.

Definition at line 651 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::UNGQR ( const OrdinalType  m,
const OrdinalType  n,
const OrdinalType  k,
ScalarType *  A,
const OrdinalType  lda,
const ScalarType *  TAU,
ScalarType *  WORK,
const OrdinalType  lwork,
OrdinalType *  info 
) const

Generates an m by n matrix Q with orthonormal columns which is defined as the first
columns of a product of k elementary reflectors of order m, as returned by GEQRF.

Note:
This method will call ORGQR when the ScalarType is float or double.

Definition at line 657 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::ORGHR ( const OrdinalType  n,
const OrdinalType  ilo,
const OrdinalType  ihi,
ScalarType *  A,
const OrdinalType  lda,
const ScalarType *  TAU,
ScalarType *  WORK,
const OrdinalType  lwork,
OrdinalType *  info 
) const

Generates a real orthogonal matrix Q which is the product of ihi-ilo elementary reflectors of order n, as returned by GEHRD. On return Q is stored in A.

Note:
This method is not defined when the ScalarType is std::complex<float> or std::complex<double>.

Definition at line 663 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::ORMHR ( const char  SIDE,
const char  TRANS,
const OrdinalType  m,
const OrdinalType  n,
const OrdinalType  ilo,
const OrdinalType  ihi,
const ScalarType *  A,
const OrdinalType  lda,
const ScalarType *  TAU,
ScalarType *  C,
const OrdinalType  ldc,
ScalarType *  WORK,
const OrdinalType  lwork,
OrdinalType *  info 
) const

Overwrites the general real m by n matrix C with the product of C and Q, which is a product of ihi-ilo elementary reflectors, as returned by GEHRD.

Note:
This method is not defined when the ScalarType is std::complex<float> or std::complex<double>.

Definition at line 669 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::TREVC ( const char  SIDE,
const char  HOWMNY,
OrdinalType *  select,
const OrdinalType  n,
const ScalarType *  T,
const OrdinalType  ldt,
ScalarType *  VL,
const OrdinalType  ldvl,
ScalarType *  VR,
const OrdinalType  ldvr,
const OrdinalType  mm,
OrdinalType *  m,
ScalarType *  WORK,
OrdinalType *  info 
) const

Computes some or all of the right and/or left eigenvectors of an upper triangular matrix T. If ScalarType is float or double, then the matrix is quasi-triangular and arugments RWORK is ignored.

Definition at line 675 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::TREVC ( const char  SIDE,
const OrdinalType  n,
const ScalarType *  T,
const OrdinalType  ldt,
ScalarType *  VL,
const OrdinalType  ldvl,
ScalarType *  VR,
const OrdinalType  ldvr,
const OrdinalType  mm,
OrdinalType *  m,
ScalarType *  WORK,
MagnitudeType RWORK,
OrdinalType *  info 
) const

Computes some or all of the right and/or left eigenvectors of an upper triangular matrix T. If ScalarType is float or double, then the matrix is quasi-triangular and arugments RWORK is ignored.

Note:
(This is the version used for any ScalarType, when the user doesn't want to enable the selecting functionality, with HOWMNY='A'.)

Definition at line 681 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::TREXC ( const char  COMPQ,
const OrdinalType  n,
ScalarType *  T,
const OrdinalType  ldt,
ScalarType *  Q,
const OrdinalType  ldq,
OrdinalType  ifst,
OrdinalType  ilst,
ScalarType *  WORK,
OrdinalType *  info 
) const

Reorders the Schur factorization of a matrix T via unitary similarity transformations so that the diagonal element of T with row index ifst is moved to row ilst. If ScalarType is float or double, then T should be in real Schur form and the operation affects the diagonal block referenced by ifst.

Note:
This method will ignore the WORK std::vector when ScalarType is std::complex<float> or std::complex<double>.

Definition at line 687 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::LARTG ( const ScalarType  f,
const ScalarType  g,
MagnitudeType c,
ScalarType *  s,
ScalarType *  r 
) const

Generates a plane rotation that zeros out the second component of the input std::vector.

Definition at line 711 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::LARFG ( const OrdinalType  n,
ScalarType *  alpha,
ScalarType *  x,
const OrdinalType  incx,
ScalarType *  tau 
) const

Generates an elementary reflector of order n that zeros out the last n-1 components of the input std::vector.

Definition at line 717 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
ScalarType Teuchos::LAPACK< OrdinalType, ScalarType >::LARND ( const OrdinalType  idist,
OrdinalType *  seed 
) const

Returns a random number from a uniform or normal distribution.

Definition at line 723 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
void Teuchos::LAPACK< OrdinalType, ScalarType >::LARNV ( const OrdinalType  idist,
OrdinalType *  seed,
const OrdinalType  n,
ScalarType *  v 
) const

Returns a std::vector of random numbers from a chosen distribution.

Definition at line 729 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
ScalarType Teuchos::LAPACK< OrdinalType, ScalarType >::LAMCH ( const char  CMACH  )  const

Determines machine parameters for floating point characteristics.

Note:
This method is not defined when the ScalarType is std::complex<float> or std::complex<double>.

Definition at line 693 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
OrdinalType Teuchos::LAPACK< OrdinalType, ScalarType >::ILAENV ( const OrdinalType  ispec,
const std::string &  NAME,
const std::string &  OPTS,
const OrdinalType  N1 = -1,
const OrdinalType  N2 = -1,
const OrdinalType  N3 = -1,
const OrdinalType  N4 = -1 
) const

Chooses problem-dependent parameters for the local environment.

Note:
This method should give parameters for good, but not optimal, performance on many currently available computers.

Definition at line 699 of file Teuchos_LAPACK.hpp.

template<typename OrdinalType, typename ScalarType>
ScalarType Teuchos::LAPACK< OrdinalType, ScalarType >::LAPY2 ( const ScalarType  x,
const ScalarType  y 
) const

Computes x^2 + y^2 safely, to avoid overflow.

Note:
This method is not defined when the ScalarType is std::complex<float> or std::complex<double>.

Definition at line 705 of file Teuchos_LAPACK.hpp.


The documentation for this class was generated from the following file:
Generated on Tue Jul 13 09:23:01 2010 for Teuchos - Trilinos Tools Package by  doxygen 1.4.7