Construction of Laplace operator on a uniform hexahedral mesh using arbitrary-degree elements. This is the second most naive implementation wherein we form the stiffness matrix on each cell by quadrature, but we do preallocate the global matrix graph before assembling. More...
#include "Intrepid_FunctionSpaceTools.hpp"
#include "Intrepid_FieldContainer.hpp"
#include "Intrepid_CellTools.hpp"
#include "Intrepid_HGRAD_HEX_Cn_FEM.hpp"
#include "Intrepid_DefaultCubatureFactory.hpp"
#include "Intrepid_Utils.hpp"
#include "Epetra_Time.h"
#include "Epetra_Map.h"
#include "Epetra_FEVector.h"
#include "Epetra_FECrsMatrix.h"
#include "Epetra_SerialComm.h"
#include "Teuchos_oblackholestream.hpp"
#include "Teuchos_RCP.hpp"
#include "Shards_CellTopology.hpp"
#include "EpetraExt_MultiVectorOut.h"
Go to the source code of this file.
Functions | |
int | main (int argc, char *argv[]) |
Construction of Laplace operator on a uniform hexahedral mesh using arbitrary-degree elements. This is the second most naive implementation wherein we form the stiffness matrix on each cell by quadrature, but we do preallocate the global matrix graph before assembling.
div grad u = f in Omega u = 0 on Gamma Discrete linear system for nodal coefficients(x): Kx = b K - HGrad stiffness matrix b - right hand side vector
./Intrepid_example_Drivers_Example_11.exe N verbose int degree - polynomial degree int NX - num intervals in x direction (assumed box domain, 0,1) int NY - num intervals in x direction (assumed box domain, 0,1) int NZ - num intervals in x direction (assumed box domain, 0,1) verbose (optional) - any character, indicates verbose output
./Intrepid_example_Drivers_Example_11.exe 2 10 10 10
Definition in file example_11.cpp.