Stokhos::DerivBasis< ordinal_type, value_type > Class Template Reference

Abstract base class for multivariate orthogonal polynomials that support computing double and triple products involving derivatives of the basis polynomials. More...

#include <Stokhos_DerivBasis.hpp>

Inheritance diagram for Stokhos::DerivBasis< ordinal_type, value_type >:
Inheritance graph
[legend]
Collaboration diagram for Stokhos::DerivBasis< ordinal_type, value_type >:
Collaboration graph
[legend]

List of all members.

Public Member Functions

 DerivBasis ()
 Constructor.
virtual ~DerivBasis ()
 Destructor.
virtual Teuchos::RCP
< Stokhos::Dense3Tensor
< ordinal_type, value_type > > 
computeDerivTripleProductTensor (const Teuchos::RCP< const Teuchos::SerialDenseMatrix< ordinal_type, value_type > > &Bij, const Teuchos::RCP< const Stokhos::Sparse3Tensor< ordinal_type, value_type > > &Cijk) const =0
 Compute triple product tensor $D_{ijk} = \langle\Psi_i\Psi_j D_v\Psi_k\rangle$ where $D_v\Psi_k$ represents the derivative of $\Psi_k$ in the direction $v$.
virtual Teuchos::RCP
< Teuchos::SerialDenseMatrix
< ordinal_type, value_type > > 
computeDerivDoubleProductTensor () const =0
 Compute double product tensor $B_{ij} = \langle \Psi_i D_v\Psi_j\rangle$ where $D_v\Psi_j$ represents the derivative of $\Psi_j$ in the direction $v$.

Detailed Description

template<typename ordinal_type, typename value_type>
class Stokhos::DerivBasis< ordinal_type, value_type >

Abstract base class for multivariate orthogonal polynomials that support computing double and triple products involving derivatives of the basis polynomials.


Member Function Documentation

template<typename ordinal_type , typename value_type >
virtual Teuchos::RCP< Teuchos::SerialDenseMatrix<ordinal_type, value_type> > Stokhos::DerivBasis< ordinal_type, value_type >::computeDerivDoubleProductTensor (  )  const [pure virtual]

Compute double product tensor $B_{ij} = \langle \Psi_i D_v\Psi_j\rangle$ where $D_v\Psi_j$ represents the derivative of $\Psi_j$ in the direction $v$.

The definition of $v$ is defined by the derived class implementation.

Implemented in Stokhos::CompletePolynomialBasis< ordinal_type, value_type >.

template<typename ordinal_type , typename value_type >
virtual Teuchos::RCP< Stokhos::Dense3Tensor<ordinal_type, value_type> > Stokhos::DerivBasis< ordinal_type, value_type >::computeDerivTripleProductTensor ( const Teuchos::RCP< const Teuchos::SerialDenseMatrix< ordinal_type, value_type > > &  Bij,
const Teuchos::RCP< const Stokhos::Sparse3Tensor< ordinal_type, value_type > > &  Cijk 
) const [pure virtual]

Compute triple product tensor $D_{ijk} = \langle\Psi_i\Psi_j D_v\Psi_k\rangle$ where $D_v\Psi_k$ represents the derivative of $\Psi_k$ in the direction $v$.

The definition of $v$ is defined by the derived class implementation.

Implemented in Stokhos::CompletePolynomialBasis< ordinal_type, value_type >.


The documentation for this class was generated from the following file:
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator
Generated on Wed Apr 13 09:58:14 2011 for Stokhos by  doxygen 1.6.3