
MOOCHO
Version of the Day

Generated by Doxygen 1.7.4

Wed Feb 8 2012 09:35:48

CONTENTS 1

Contents

1 MOOCHO: Multi-functional Object-Oriented arCHitecture for Optimization 2

1.1 Outline . 2

1.2 Introduction . 3

1.3 MOOCHO Mathematical Overview Document 4

1.4 Hyper-linked HTML version of this Document 4

1.5 MOOCHO Quickstart . 5

1.5.1 Setting up a driver program to call a MOOCHO solver 5

1.5.2 Running MOOCHO to Solve Optimization Problems 5

1.6 Representing Nonlinear Programs for MOOCHO to Solve 15

1.6.1 Representing General Serial NLPs with Explicit Jacobian Entries 16

1.6.2 Representing Simulation-Constrained Parallel NLPs through Thyra 17

1.7 Other Trilinos Packages on which MOOCHO Directly Depends 19

1.8 Individual MOOCHO Doxygen Collections 19

1.9 Browse all of MOOCHO as a Single Doxygen Collection 20

1.10 Links to Other Documentation Collections 20

2 Module Index 21

2.1 Modules . 21

3 Module Documentation 21

3.1 Sample MOOCHO input and output. 22

3.2 Sample MOOCHO Options File . 22

3.3 Sample MOOCHO Console Output . 24

3.4 Sample MOOCHO Algorithm Configuration Output (MoochoAlgo.out) . . 24

3.5 Sample MOOCHO Algorithm Summary Output (MoochoSummary.out) . 25

3.6 Sample MOOCHO Algorithm Journal Output (MoochoJournal.out) . . . 26

4 Example Documentation 26

4.1 ExampleNLPBandedMain.cpp . 26

4.2 NLPThyraEpetraAdvDiffReactOptMain.cpp 26

4.3 NLPThyraEpetraModelEval4DOptMain.cpp 27

Generated on Wed Feb 8 2012 09:35:48 for MOOCHO by Doxygen

1 MOOCHO: Multi-functional Object-Oriented arCHitecture for Optimization 2

4.4 NLPWBCounterExampleMain.cpp . 27

1 MOOCHO: Multi-functional Object-Oriented arCHitecture for
Optimization

1.1 Outline

• Introduction

• MOOCHO Mathematical Overview Document

• Hyper-linked HTML version of this Document

• MOOCHO Quickstart

– Setting up a driver program to call a MOOCHO solver

– Running MOOCHO to Solve Optimization Problems

* Linear solver input parameters for Stratimikos (Thyra models only)

* MOOCHO input options

* MOOCHO algorithm output

· Console output (output)

· Algorithm Configuration Output (MoochoAlgo.out)

· Algorithm Summary and Timing Output (MoochoSummary.out)

· Algorithm Journal Output (MoochoJournal.out)

* Algorithm Interruption

• Representing Nonlinear Programs for MOOCHO to Solve

– Representing General Serial NLPs with Explicit Jacobian Entries

– Representing Simulation-Constrained Parallel NLPs through Thyra

• Other Trilinos Packages on which MOOCHO Directly Depends

• Individual MOOCHO Doxygen Collections

• Browse all of MOOCHO as a Single Doxygen Collection

• Links to Other Documentation Collections

Generated on Wed Feb 8 2012 09:35:48 for MOOCHO by Doxygen

1.2 Introduction 3

1.2 Introduction

MOOCHO (Multifunctional Object-Oriented arCHitecture for Optimization) is a
Trilinos package written in C++ designed to solve large-scale, equality and
inequality nonlinearly constrained, non-convex optimization problems (i.e. nonlinear
programs) using reduced-space successive quadratic programming (SQP) methods.
The most general form of the optimization problem that can be solved is:

minimize f (x)
subject to c(x) = 0

xL ≤ x≤ xU

where x ∈ℜn the vector of optimization variables, f (x) ∈ℜn →ℜ is the nonlinear
scalar objective function, c(x) = 0 (where c(x) ∈ℜn →ℜm) are the nonlinear
constraints, and xL and xU are the upper and lower bounds on the variables. The
current algorithms in MOOCHO are well suited to solving optimization problems with
massive numbers of unknown variables and equations but few so-called degrees of
optimization freedom (i.e. the degrees of freedom = the number of variables minus the
number of equality constraints = n−m). Various line-search based globalization
methods are available, including exact penalty functions and a form of the filter
method. Many of the algorithms in MOOCHO are provably locally and globally
convergent for a wide class of problems in theory but in practice the behavior and the
performance of the algorithms varies greatly from problem to problem.

MOOCHO was initially developed to solve general sparse optimization problems where
there is no clear distinction between state variables and optimization parameters. For
these types of problems a serial sparse direct solver must be used (i.e. MA28) to find a
square basis that is needed for the variable reduction decompositions that are current
supported.

More recently, MOOCHO has been interfaced through Thyra and the
Thyra::ModelEvaluator interface to address very large-scale, massively
parallel, simulation-constrained optimization problems that take the form:

minimize f (xD,xI)
subject to c(xD,xI) = 0

xD,L ≤ xD ≤ xD,U
xI,L ≤ xI ≤ xI,U

where xD ∈ℜm are the "dependent" state variables, xI ∈ℜn−m are the "independent"
optimization parameters and c(xD,xI) = 0 are the discrete nonlinear state simulation
equations. Here the state Jacobian ∂c

∂xD
must be square and nonsingular and the

partitioning of x =
[

xT
D xT

I
]T

into state variables xD and optimization variables xI
must be known a priori and this partitioning can not change during a solve. Warning,
the Thyra::ModelEvaluator interface uses a overlapping and inconsistent set
set of names for the variables and the problem functions than the names used by

Generated on Wed Feb 8 2012 09:35:48 for MOOCHO by Doxygen

http://trilinos.sandia.gov
file:../../../thyra/doc/html/index.html

1.3 MOOCHO Mathematical Overview Document 4

MOOCHO. All of the functionality needed for MOOCHO to solve a
simulation-constrained optimization problem can be specified through sub-classing the
Thyra::ModelEvaluator interface, and related Thyra interfaces. Epetra-based
applications can instead implement the EpetraExt::ModelEvaluator interface
and never need to work with Thyra directly except in trivial and transparent ways.

For simulation-constrained optimization problems, MOOCHO can utilize the full power
of the massively parallel iterative linear solvers and preconditioners available in Trilinos
through Thyra through the Stratimikos package by just flipping a few switches in a
parameter list. These include all of the direct solves in Amesos, the preconditioners in
Ifpack and ML, and the iterative Krylov solvers in AztecOO and Belos (Belos is
not being released but is available in the development version of Trilinos). For small to
moderate numbers of optimization parameters, the only bottleneck to parallel
scalability is the linear solver used to solve linear systems involving the state Jacobian
∂c

∂xD
. The reduced-space SQP algorithms in MOOCHO itself achieve extremely good

parallel scalability. The parallel scalability of the linear solvers is controlled by the
simulation application and the Trilinos linear solvers and preconditioners themselves.
Typically, the parallel scalability of the linear solve is limited by the preconditioner as
the problem is partitioned to more and more processes.

MOOCHO also includes a minimally invasive mode for reduced-space SQP where the
simulator application only needs to compute the objective and constraint functions
f (xD,xI) ∈ℜn →ℜ and c(xD,xI) ∈ℜn →ℜm and solve only forward linear systems
involving ∂c

∂xD
. All other derivatives can be approximated with directional finite

differences but any exact derivatives that can be computed by the application are
happily accepted and fully utilized by MOOCHO through the
Thyra::ModelEvaluator interface.

1.3 MOOCHO Mathematical Overview Document

A more detailed mathematical overview of nonlinear programming and the algorithms
that MOOCHO implements are described in the document A Mathematical and
High-Level Overview of MOOCHO. This document also defines the mapping
of mathematical notation to C++ identifiers used by MOOCHO. User’s should at least
browse this document in order to understand the basics of what MOOCHO is doing.

1.4 Hyper-linked HTML version of this Document

The doxygen-generated hyper-linked version of his document can be found at the
Trilinos website under the link to MOOCHO.

Generated on Wed Feb 8 2012 09:35:48 for MOOCHO by Doxygen

file:../../../stratimikos/doc/html/index.html
file:../../../amesos/doc/html/index.html
file:../../../ifpack/doc/html/index.html
file:../../../ml/doc/html/index.html
file:../../../aztecoo/doc/html/index.html
file:../../../belos/doc/html/index.html

1.5 MOOCHO Quickstart 5

1.5 MOOCHO Quickstart

In order to get started using MOOCHO to solve your NLPs you must first build
MOOCHO as part of Trilinos and install it.

Quickstart Outline

• Setting up a driver program to call a MOOCHO solver

• Running MOOCHO to Solve Optimization Problems

– Linear solver input parameters for Stratimikos (Thyra models only)

– MOOCHO input options

– MOOCHO algorithm output

* Console output (output)

* Algorithm Configuration Output (MoochoAlgo.out)

* Algorithm Summary and Timing Output (MoochoSummary.out)

* Algorithm Journal Output (MoochoJournal.out)

– Algorithm Interruption

1.5.1 Setting up a driver program to call a MOOCHO solver

Once an NLP is defined, a driver program must be constructed to setup a MOOCHO
solver and configure it given options set by the user. When building a driver program to
solve an NLP based on an
NLPInterfacePack::NLPSerialPreprocessExplJac subclass object,
one should directly use the "Facade" solver class MoochoPack::MoochoSolver
(see NLPWBCounterExampleMain.cpp). However, when using an NLP based
on a Thyra::ModelEvaluator object, then the more specialized "Facade" solver
class MoochoPack::MoochoThyraSolver should be used (see
NLPThyraEpetraModelEval4DOptMain.cpp). The class
MoochoPack::MoochoThyraSolver just uses
MoochoPack::MoochoSolver internally for the main solve but provides a great
deal of extra functionality to set initial guesses (also from an input file) and wrap the
model evaluator object with various "Decorator" skins and to capture and return the
final solution.

1.5.2 Running MOOCHO to Solve Optimization Problems

Once an NLP is defined and a driver program is in place (see the above driver
programs), then MOOCHO can be run to try to solve the optimization problem. Most of
the options that affect MOOCHO (and the Trilinos linear solvers accessed through
Stratimikos) can be read in from various input files or specified entirely on the

Generated on Wed Feb 8 2012 09:35:48 for MOOCHO by Doxygen

file:./NLPWBCounterExampleMain_8cpp-example.html
file:./NLPThyraEpetraModelEval4DOptMain_8cpp-example.html

1.5 MOOCHO Quickstart 6

command line. The diver programs shown above show examples of how to setup a
Techos::CommandLineProcessor object to accept a number of different command-line
arguments that can be used to read in MOOCHO and Trilinos linear solver options. For
example, consider the simple driver program
NLPThyraEpetraModelEval4DOptMain.cpp. This example shows the use of
both MOOCHO options and Stratimikos linear solver options.

Here are the command-line arguments that the program
NLPThyraEpetraModelEval4DOptMain.cpp accepts:

Below, the various types of input and output are described. Input parameters/options
are separated into linear solver parameters for Stratimikos and algorithm options for
MOOCHO.

1.5.2.1 Linear solver input parameters for Stratimikos (Thyra models only)

When using a Thyra::ModelEvaluator-based NLP, the linear solver options for
inverting the basis of the equality constraints are read in through a
Teuchos::ParameterList object which is accepted through the Stratimikos
class Stratimikos::DefaultLinearSolverBuilder. When a
MoochoPack::MoochoThyraSolver object is used to build a driver program, it
can add options to the Teuchos::CommandLineProcessor object through the
function Stratimikos::DefaultLinearSolverBuilder::setupCLP()
(see NLPThyraEpetraModelEval4DOptMain.cpp). This adds the
command-line arguments --linear-solver-params-file and
--extra-linear-solver-params which are used to read in parameters for
the Stratimikos-wrapped linear solvers in XML format.

The linear solver parameters file is specified in XML and the list of all of the valid
options can be found in the documentation for the class
Stratimikos::DefaultLinearSolverBuilder itself.

An example of a linear solver options input file that specifies the use of the Amesos
solver Amesos_Klu is shown below:

The XML input for the linear solver parameters can be read from a file using the
--linear-solver-params-file argument and/or from the command-line
itself using the --extra-linear-solver-params argument. Note that any
parameters specified by the --extra-linear-solver-params argument will
append and overwrite those read in from the file specified by the
--linear-solver-params-file argument. If the argument
--linear-solver-params-file is missing, then a set of internal options is
looked for instead.

Generated on Wed Feb 8 2012 09:35:48 for MOOCHO by Doxygen

file:./NLPThyraEpetraModelEval4DOptMain_8cpp-example.html
file:./NLPThyraEpetraModelEval4DOptMain_8cpp-example.html
file:./NLPThyraEpetraModelEval4DOptMain_8cpp-example.html

1.5 MOOCHO Quickstart 7

1.5.2.2 MOOCHO input options

The input for the MOOCHO options currently uses a completely different system than
for linear solver parameters used by Stratimikos. The class
OptionsFromStreamPack::OptionsFromStream is used to read in
MOOCHO options from a text string (or a file) and is used to represent an options data
base that is used by MOOCHO. The function
MoochoPack::MoochoSolver::setup_commandline_processor()
can be used to set the command-line arguments --moocho-options-file and
--moocho-extra-options to read in MOOCHO options. The format of the
options file and a listing, with documentation, of all of the valid MOOCHO options is
shown here.

An example of an options file showing some of the common options that a user might
want to set is shown below:

begin_options

options_group NLPSolverClientInterface {
max_iter = 20;
max_run_time = 2.0; *** In minutes
opt_tol = 1e-2;
feas_tol = 1e-7;

* journal_output_level = PRINT_NOTHING; * No output to journal from algorithm

* journal_output_level = PRINT_BASIC_ALGORITHM_INFO; * O(1) information usually
journal_output_level = PRINT_ALGORITHM_STEPS; * O(iter) output to journal [default]

* journal_output_level = PRINT_ACTIVE_SET; * O(iter*nact) output to journal

* journal_output_level = PRINT_VECTORS; * O(iter*n) output to journal (lots!)

* journal_output_level = PRINT_ITERATION_QUANTITIES; * O(iter*n*m) output to journal (big lots!)

* null_space_journal_output_level = DEFAULT; * Set to journal_output_level [default]

* null_space_journal_output_level = PRINT_ACTIVE_SET; * O(iter*nact) output to journal

* null_space_journal_output_level = PRINT_VECTORS; * O(iter*(n-m)) output to journal (lots!)
null_space_journal_output_level = PRINT_ITERATION_QUANTITIES; * O(iter*(n-m)^2) output to journal (big lots!)
journal_print_digits = 10;
calc_conditioning = true;
calc_matrix_norms = true; *** (costly?)
calc_matrix_info_null_space_only = true; *** (costly?)

}

options_group DecompositionSystemStateStepBuilderStd {

* null_space_matrix = AUTO; *** Let the solver decide [default]
null_space_matrix = EXPLICIT; *** Compute and store D = -inv(C)*N explicitly

* null_space_matrix = IMPLICIT; *** Perform operations implicitly with C, N (requires adjoints)

* range_space_matrix = AUTO; *** Let the algorithm decide dynamically [default]

* range_space_matrix = COORDINATE; *** Y = [I; 0] (Cheaper computationally)
range_space_matrix = ORTHOGONAL; *** Y = [I; -N’*inv(C’)] (more stable)

}

options_group NLPAlgoConfigMamaJama {

* quasi_newton = AUTO; *** Let solver decide dynamically [default]
quasi_newton = BFGS; *** Dense BFGS

* quasi_newton = LBFGS; *** Limited memory BFGS

* line_search_method = AUTO; *** Let the solver decide dynamically [default]

* line_search_method = NONE; *** Take full steps at every iteration

Generated on Wed Feb 8 2012 09:35:48 for MOOCHO by Doxygen

1.5 MOOCHO Quickstart 8

* line_search_method = DIRECT; *** Use standard Armijo backtracking
line_search_method = FILTER; *** [default] Use the Filter line search method

}

end_options

For more detailed documentation on what each of these options mean and more, see
the full listing of the options here.

The command-line argument --moocho-options-file is used to read in an set
of MOOCHO options from a file using the format shown above. If the argument
--moocho-options-file is missing, then a file with the name "Moocho.opt" is
looked for in the current directory. If this file is not found, then a warning is printed and
a default set of options are used. The user is warned to check that their opinions file
was actually read and that it will be ignored if it is not found!

The argument --moocho-extra-options can be used to specify MOOCHO
options directly on the command line in a slightly more terse format than the format of
a MOOCHO options file. For example, the command-line equivalent to a subset of the
options set in the above example MOOCHO options file is:

--moocho-extra-options="\
NLPSolverClientInterface{max_iter=20,max_run_time=2.0,opt_tol=1e-2,feas_tol=1e-7\

,journal_output_level= PRINT_ALGORITHM_STEPS\
,null_space_journal_output_level=PRINT_ITERATION_QUANTITIES\
,journal_print_digits=10,calc_conditioning=true,calc_matrix_norms=true\
,calc_matrix_info_null_space_only=true}\

:DecompositionSystemStateStepBuilderStd{\
null_space_matrix=EXPLICIT,range_space_matrix=ORTHOGONAL}\

:NLPAlgoConfigMamaJama{quasi_newton=BFGS,line_search_method=FILTER}"

The options specified in the --moocho-extra-options argument will append
and override those read in from a MOOCHO input file specified by the
--moocho-options-file argument.

1.5.2.3 MOOCHO algorithm output

When a MOOCHO optimization algorithm is run, by default, several different types of
output are generated. By default, output is sent to the console (i.e. standard out) and
to three different files: MoochoSummary.out, MoochoAlgo.out, and
MoochoJournal.out. These four output streams provide different types of
information about the MOOCHO algorithm.

To demonstrate the output files, here we show example output generated by the
example program NLPThyraEpetraModelEval4DOptMain.cpp. This
example is used since it is fairly simple but can be used to generate more interesting
output files. The output from running MOOCHO on a
Thyra::ModelEvaluator-based NLP looks very similar to running on one based
on the more general NLP interface.

Generated on Wed Feb 8 2012 09:35:48 for MOOCHO by Doxygen

file:./NLPThyraEpetraModelEval4DOptMain_8cpp-example.html

1.5 MOOCHO Quickstart 9

The example program NLPThyraEpetraModelEval4DOpt.exe when run with
the command-line arguments:

with the above sample Moocho.opt options file, creates the output:

• Console output (output)

• Algorithm Configuration Output (MoochoAlgo.out)

• Algorithm Summary and Timing Output (MoochoSummary.out)

• Algorithm Journal Output (MoochoJournal.out)

Each of these different types of output are described below and the major types of
output that are included in each output stream are discussed. The purpose of this
treatment is to familiarize the user with the contents of these outputs and to give hints
of where to look for a certain types of information.

Before going into the details of each individual type of output, first a few general
comments are in order. First, at the top of every output file (except for the console
output) a header is included that briefly describes the general purpose of the output
file. This header is followed by an echo of the options that where read into the
OptionsFromStreamPack::OptionsFromSteam object. These options
include those set in the input file Moocho.opt or by some other means (e.g.∼in the
executable or on the command line) as described above. The purpose of echoing the
options in each file is to help record what setting were used to produce the output in
the file. Of course the output is also influenced by other factors (e.g. other
command-line options, properties of the specific NLP being solved etc.) and therefore
these options do not determine the complete behavior of the software.

Console Output (output)

Console outputting is generated by a default
IterationPack::AlgorithmTracker subclass subclass object of type
MoochoPack::MoochoTrackerConsoleStd. This output is designed to
approximately fit in an 80 character wide console. Here is the output that is generated
for this example program:

Above, one of the the first things printed is the size of the NLP where n is the total
number of variables, m is the total number of equality constraints and nz is the number
of nonzeros in the Jacobian ∇c (Gc). Note that for a simulation-constrained
optimization problem that nz will not give any useful information since this is not
available through the Thyra interfaces.

Generated on Wed Feb 8 2012 09:35:48 for MOOCHO by Doxygen

1.5 MOOCHO Quickstart 10

Following the global dimensions of the problem, a table containing summary
information for each rSQP iteration is printed in real time. Each column in this table has
the following meaning:

• k : The SQP iteration counter. This count starts from zero so the total number of
SQP iterations is one plus the final k.

• f : The value of the objective function f (x) (possibly scaled) at current estimate
of the solution xk

• ||c||s : The scaled residual of the norm of the equality constraints c(x) at
current estimate of the solution xk. The scaling is determined by the
convergence check (see the step "CheckConvergence" in MoochoAlgo.out and
MoochoJournal.out) and this value is actually equal to the iteration quantity
feas_kkt_err (see the file MoochoAlgo.out). This is the error that is
compared to the tolerance feas_tol in the convergence check (which is equal
to the option NLPSolverClientInterface{feas_tol}). The unscaled
constraint norm can be viewed in the more detailed iteration summary table
printed in the file MoochoSummary.out.

• ||rGL||s : The scaled norm of the reduced gradient of the Lagrangian ZT ∇xL at
current estimate of the solution xk. The scaling is determined by the
convergence check (see the step "CheckConvergence" in MoochoAlgo.out and
MoochoJournal.out) and this value is actually equal to the iteration quantity
opt_kkt_err (see the file MoochoAlgo.out). This is the error that is
compared to the tolerance opt_tol in the convergence check (which is equal
to the option NLPSolverClientInterface{opt_tol}). The unscaled
norm can be viewed in the more detailed summary table printed in the file
MoochoSummary.out.

• QN : This field indicates whether a quasi-Newton update of the reduced Hessian
was performed or not. The following are the possible values:

– IN : Reinitialized (usually to identity I)

– DU : A dampened update was performed

– UP : An undamped update was performed

– SK : The update was skipped on purpose

– IS : The update was skipped because it was indefinite

• #act : Number of active constraints in the QP subproblem. This field only has
meaning for an active-set algorithms. For interior-point algorithms, this will just
equal the number of bounded variables and does not provide any useful
information. For problems without any bounds or inequality constraints, this
column is not shown.

• ||Ypy||2 : The ||.||2 norm of the quasi-normal contribution (Y py)k. This norm
gives a sense of how large the feasibility steps are.

Generated on Wed Feb 8 2012 09:35:48 for MOOCHO by Doxygen

1.5 MOOCHO Quickstart 11

• ||Zpz||2 : The ||.||2 norm of the tangential contribution (Zpz)k. This norm gives
a sense of how large the optimality steps are.

• ||d||inf : The ||.||∞ norm of the total step dk = (Y py)k +(Zpz)k. This norm
gives a sense of how large the full SQP steps are in x.

• alpha : The step length taken along xk+1 = xk +αdk. A step length of α = 0
represents a major event in the algorithm such as a line search failure followed
by the selection of a new basis or a QP failure followed by a reinitialization of the
reduced Hessian. A small number for α indicates that many backtracking line
search iterations where required and is an indication that the computed search
direction dk is of poor quality. A value of alpha=1.0 usually indicates that the
algorithm is taking full spaces and may be performing well.

• time(s) : The total wall-clock time consumed by the algorithm to that point.
By differencing the times between iterations, one can compute the amount of
time taken for each iteration. See the more detailed timing output in the file
MoochoSummary.out.

After the iteration summary is printed, the total wall-clock time is given in Total
time. This is the wall-clock time that is consumed from the time that the
MoochoPack::MoochoTrackerConsoleStd object is first initialized up until
the time that the final state of the algorithm is reported. Therefore, this wall-clock time
may contain more than just the execution time of the algorithm proper. For more
detailed built-in timings, see the table at the end of the file MoochoSummary.out.

Following the total runtime, the total number of function and gradient evaluations is
given for the objective and the constraints. Note that if finite difference testing is turned
on, then many extra evaluations will be performed and this will inflate these counters.

Algorithm Configuration Output (MoochoAlgo.out)

In addition to output the console, MOOCHO will also write a file called MoochoAlgo.out
by default that gives information about what MOOCHO algorithm is configured and
what logic went into its configuration. This file is too long to be shown here. This file
provides the road map for determining what iteration quantities are being used by the
algorithm, what the algorithmic steps are, and what the logic of the algorithm is using a
shorthand, Matlab-like, notation. This file is the first place to go when trying to figure
out what a MOOCHO algorithm is doing and is critical to understand the
MoochoJournal.out file.

Many of the options specified in the options file are shown in the printed algorithm. The
user can therefore study the algorithm printout to see what effect some of the options
have. For example, the option NLPSolverClientInterface{opt_tol} is
used in the Step "CheckConvergence" under the name opt_tol in the files
MoochoAlgo.out and MoochoJournal.out. Some of the options only determine the
algorithm configuration, which affects what steps are included, how steps are set up
and in what order they are included. These option names are not specifically shown in
the algorithm printout per-say. For example, the option

Generated on Wed Feb 8 2012 09:35:48 for MOOCHO by Doxygen

1.5 MOOCHO Quickstart 12

NLPAlgo_ConfigMamaJama{max_dof_quasi_newton_dense}
determines when the algorithm configuration will switch from using dense BFGS to
using limited-memory BFGS but this identifier name
max_dof_quasi_newton_dense is not shown anywhere in the listing. However,
the configuration object can print out a short log (to the MoochoAlgo.out file) to
show the user how these options impact the configuration of the algorithm.

Algorithm Summary and Timing Output (MoochoSummary.out)

The file MoochoSummary.out contains a more detailed summary table than what is
sent to the console, a table of the timings for each algorithm step for each iteration, and
some limited profiling-type output (produced by Teuchos::TimeMonitor).

Algorithm Journal Output (MoochoJournal.out)

The file MoochoJournal.out contains more detailed, iteration by iteration, step by step
information on what the algorithm is doing. The steps shown in this output are the
same that are shown in the pseudo algorithm description shown in the file
MoochoAlgo.out described above. The amount of output produced in this file is mainly
controlled by the option
NLPSolverClientInterface{journal_output_level} and the value of
PRINT_ALGORITHM_STEPS is usually the most appropriated in most cases and
prints only O(k) output, where k is the SQP iteration counter. The value of
ITERATION_QUANTITIES will produce obscene amounts of debugging output and
will dump nearly every vector and every matrix used in the algorithm. There are many
options in the Moocho.opt options file that control exactly what type of output is
generated to meet different needs. Note that the option
NLPSolverClientInterface{null_space_journal_output_level}
will override NLPSolverClientInterface{journal_output_level} for
quantities that lie in the null space. This is helpful for seeing the progress of the
algorithm where there are few degrees of optimization freedom.

1.5.2.4 Algorithm Interruption

All MOOCHO algorithms can be interrupted at any time while the algorithm is running
and result in a graceful termination, even for parallel runs with MPI. When running in
interactive mode (i.e. the user has access to standard in and standard out at the
console) then typing Ctrl-C will cause the algorithm to pause at the end of the
current algorithm step and menu like the following will appear:

IterationPack::Algorithm::interrupt(): Received signal SIGINT. Wait for
the end of the current step and respond to an interactive query, kill
the process by sending another signal (i.e. SIGKILL).

IterationPack::Algorithm: Received signal SIGINT.
Just completed current step curr_step_name = "EvalNewPoint", curr_step_poss = 1
of steps [1...9].
Do you want to:

(a) Abort the program immediately?
(c) Continue with the algorithm?

Generated on Wed Feb 8 2012 09:35:48 for MOOCHO by Doxygen

1.5 MOOCHO Quickstart 13

(s) Gracefully terminate the algorithm at the end of this step?
(i) Gracefully terminate the algorithm at the end of this iteration?

Answer a, c, s or i ?

To terminate the algorithm gracefully at the end of the current step, type ’s’, which
brings up the next question:

Terminate the algorithm with true (t) or false (f) ?

Answering false (’f’), which is interpreted as failure, results in the algorithm exiting
immediately with the partial solution being returned to the NLP object and everything
being cleaned up correctly on exit. The full output from this type of interrupt looks
something like:

*** Start of rSQP Iterations ***
n = 1331, m = 1111, nz = 1478741

k f ||c||s ||rGL||s QN ||Ypy||2 ||Zpz||2 ||d||inf alpha time(s)
---- --------- --------- --------- -- -------- -------- -------- -------- ---------

0 2.1 0.11 0.095 IN 1e+001 7 5 1 1.152
1 4.3 0.00025 0.27 UP 0.1 2 0.1 1 2.294
2 4.1 8.5e-006 0.25 DU 0.007 3 0.3 1 3.405

IterationPack::Algorithm::interrupt(): Received signal SIGINT. Wait for the end of
the current step and respond to an interactive query, kill the process by sending
another signal (i.e. SIGKILL).

IterationPack::Algorithm: Received signal SIGINT.
Just completed current step curr_step_name = "EvalNewPoint", curr_step_poss = 1 of
steps [1...9].
Do you want to:

(a) Abort the program immediately?
(c) Continue with the algorithm?
(s) Gracefully terminate the algorithm at the end of this step?
(i) Gracefully terminate the algorithm at the end of this iteration?

Answer a, c, s or i ? s

Terminate the algorithm with true (t) or false (f) ? f

---- --------- --------- --------- --
3 3.4 - - - - - - - 7.762

Total time = 7.762 sec

Oops! Not the solution. The user terminated the algorithm and said to return non-optimal!

Number of function evaluations:

f(x) : 10
c(x) : 10
Gf(x) : 5
Gc(x) : 5

Generated on Wed Feb 8 2012 09:35:48 for MOOCHO by Doxygen

1.5 MOOCHO Quickstart 14

Some algorithmic error occurred!

A MOOCHO algorithm can also be interrupted without access to standard in or
standard out (i.e. when running in batch mode) by setting up an interrupt file. When the
interrupt file is found, the algorithm is terminated. MOOCHO must be told to look for an
interrupt file by setting the option IterationPack_Algorithm{interrupt_-
file_name="interrupt.in"} where any file name can be substituted for the
name "interrupt.in". At the end of each algorithm step, MOOCHO will look for
the file "interrupt.in", usually in its current working directory (or an absolute
path can be specified as well). If it finds the file it will read it for termination instructions.
For example, a interruption file that contains

i f

will result in the algorithm terminating at the end of the current iteration with the
condition ’false’, which means failure. The output generated from this type of
interrupt looks something like:

*** Start of rSQP Iterations ***
n = 1331, m = 1111, nz = 1478741

k f ||c||s ||rGL||s QN ||Ypy||2 ||Zpz||2 ||d||inf alpha time(s)
---- --------- --------- --------- -- -------- -------- -------- -------- ---------

0 2.1 0.11 0.095 IN 1e+001 7 5 1 1.161
1 4.3 0.00025 0.27 UP 0.1 2 0.1 1 2.293
2 4.1 8.5e-006 0.25 DU 0.007 3 0.3 1 3.455

IterationPack::Algorithm: Found the interrupt file "interrupt.in"!
Just completed current step curr_step_name = "EvalNewPoint", curr_step_poss = 1 of
steps [1...9].
Read a value of abort_mode = ’i’: Will abort the program gracefully at the end of
this iteration!
Read a value of terminate_bool = ’f’: Will return a failure flag!

3 3.4 1.6e-005 0.23 DU 0.006 7 2 1 4.616
---- --------- --------- --------- --

3 3.4 1.6e-005 0.23 DU 0.006 7 2 1 4.626

Total time = 4.626 sec

Oops! Not the solution. The user terminated the algorithm and said to return
non-optimal!

Number of function evaluations:

f(x) : 11
c(x) : 11
Gf(x) : 5
Gc(x) : 5
Some algorithmic error occurred!

Generated on Wed Feb 8 2012 09:35:48 for MOOCHO by Doxygen

1.6 Representing Nonlinear Programs for MOOCHO to Solve 15

Currently when an algorithm is interrupted and terminated, only the current status of
the solution variables are returned to the NLP (i.e. through the
Thyra::ModelEvaluator::reportFinalPoint() callback function) and
no internal check-pointing is performed. Therefore, a user should not expect to be able
to restart an interrupted algorithm and have it behave the same as if it was never
interrupted. MOOCHO currently does not support general check-pointing and
restarting but this is a feature that is on the wish list for MOOCHO for an upcoming
release.

This brings the MOOCHO quickstart to a conclusion. The remaining sections provide
more detailed information on topics mentioned in the above quickstart.

1.6 Representing Nonlinear Programs for MOOCHO to Solve

In order to utilize the most powerful rSQP algorithms in MOOCHO the NLP subclass
must support the NLPInterfacePack::NLP,
NLPInterfacePack::NLPFirstOrder, and
NLPInterfacePack::NLPVarReductPerm interfaces and must supply an
object that supports the AbstractLinAlgPack::BasisSystem and
AbstractLinAlgPack::BasisSystemPerm interfaces. The details of these
interfaces are really not the concern of a general user who just wants to solve an NLP.
Therefore, here we will only discuss some of the basic issues associated with these
interfaces and what adapter-support subclasses are available to help implement the
needed functionality.

As described above in the quickstart, there are two well supported tracts to developing
concrete NLP subclasses to be used with MOOCHO. Each of these tracts provides
support software that allow the user to provide only the most basic types of information
needed to define the NLP. The first type of NLPs that are supported are general NLPs
with explicit derivative components and these NLPs can only be solved in serial. This
first type requires a direct linear solver that can be used to select a basis matrix. The
second type are simulation-constrained NLPs that can be solved on massively parallel
computers by utilizing preconditioned iterative linear solvers. This type of NLP is
supported through the Thyra::ModelEvaluator interface and can utilize much
of the linear solver capability in Trilinos. The key difference in this second type of NLP
is that the application must know a priori what the selection of state (or dependent)
variables is in order to obtain a square and well conditioned basis matrix.

These two approaches to defining NLPs are described in the next two sections
Representing General Serial NLPs with Explicit Jacobian Entries and Representing
Simulation-Constrained Parallel NLPs through Thyra.

Generated on Wed Feb 8 2012 09:35:48 for MOOCHO by Doxygen

1.6 Representing Nonlinear Programs for MOOCHO to Solve 16

1.6.1 Representing General Serial NLPs with Explicit Jacobian Entries

One type of NLP that MOOCHO can solve are general NLPs where explicit gradient
and Jacobian entries are available. This means that the gradient of the objective
function ∇ f must be available in vector coefficient form and the gradient of the
constraints matrix ∇c (i.e. the rectangular Jacobian ∂c

∂x = ∇cT) must be available in
sparse matrix form. In this type of problem, a basis matrix for the constraints need not
be known a priori but this requires the availability of a linear direct solver that can be
used to find a square nonsingular basis from a rectangular matrix. There are a few
direct solvers available that could in principle find a square basis given a rectangular
input matrix but MOOCHO only currently contains wrappers for LAPACK (i.e. dense
factorization using DEGETRF(...)) and the Harwell Subroutine Library (HSL)
routine MA28. The MA28 routine is the only viable option currently supported for
handling large sparse linear systems. In the past, other direct solvers have been
experimented with and an ambitious user can provide support for any direct solver they
would like (with the ability to find a square basis) by providing an implementation of the
AbstractLinAlgPack::DirectSparseSolver interface. If your NLP can
also provide explicit objective function gradients, then your concrete subclass should
derive from the NLPInterfacePack::NLPSerialPreprocessExplJac
subclass. More details are given below.

The first utility base subclass for general serial (i.e. runs in a single process or perhaps
on an SMP) NLPs is NLPInterfacePack::NLPSerialPreprocess. This
utility class derives from the NLPInterfacePack::NLP,
NLPInterfacePack::NLPObjGrad, and
NLPInterfacePack::NLPVarReductPerm interfaces and takes care of a lot
of details like preprocessing out fixed variables, converting general inequality
constraints to equalities by the addition of slack variables and maintaining the current
basis permutations. All of this is done to transform the "original" NLP into standard
form. The "original" NLP can include general inequality constraints in addition to
general equality constraints. The "original" NLP, however, can also includes fixed
variables (i.e. (xL)(i) = (xU)(i)). There are several different intermediate forms of the
NLP that a NLPSerialPreprocess object maintains in the transformation from
the “original” NLP to the final form. The first type of transformation is the addition of
slack variables to convert the general inequality constraints into an extra set of equality
constraints. This is called the "full" form of the NLP. The second type transformation is
the removal of fixed variables which are preprocessed out of the problem but leaving
the general inequalities intact which some parts of a MOOCHO algorithm may access
(e.g. globalization steps) through the NLP interface. The last type of transformation is
the permutation of the variables and the constraints according to the current basis
selection. All of this functionality is very useful and this makes the
NLPSerialPreprocess subclass the place to start when going to implement any
type of serial NLP to be used with an rSQP algorithm. Note that this subclass does not
address the structure or handling of the Jacobian or Hessian matrices in any way. The
handling of these matrices is deferred to subclasses to define.

Generated on Wed Feb 8 2012 09:35:48 for MOOCHO by Doxygen

1.6 Representing Nonlinear Programs for MOOCHO to Solve 17

While it may seem that the details of the transformations performed by
NLPInterfacePack::NLPSerialPreprocess are of no concern to end
users, this is not always the case. For example, a user must understand how their
original NLP is transformed in order to understand the output printed in the
MoochoJournal.out file when the journal output level
NLPSolverClientInterface{journal_print_level} is set to a value
equal to or higher than PRINT_VECTORS.

Subclasses that wish to use a generic sparse data structure for the Jacobian matrix
∇cT and a generic sparse direct linear solver to select, factor and solve linear systems
with the basis matrix C should derive from the
NLPInterfacePack::NLPSerialPreprocessExplJac subclass (which
itself derives from NLPSerialPreprocess). This subclass performs all of the
same types of transformations as its NLPSerialPreprocess base class (i.e.
removal of entries for fixed variables, addition of slack variables and basis
permutations) with the explicit Jacobian entries that are supplied by the concrete NLP
subclass. The concrete implementations of both the Jacobian matrix subclass for Gc
and the BasisSystem subclass can be overridden by the client but yet have good
default implementations. The default implementation for the matrix class for Gc is
AbstractLinAlgPack::MatrixSparseCOORSerial (which uses a
coordinate sparse matrix format). The implementation of the
AbstractLinAlgPack::BasisSystem object is handled through a subclass of
AbstractLinAlgPack::BasisSystemFactory called
AbstractLinAlgPack::BasisSystemFactoryStd.

The AbstractLinAlgPack::BasisSystemFactoryStd subclass can
create AbstractLinAlgPack::BasisSystem objects implemented through
several different direct linear solvers. Currently, only the solvers LAPACK (for small,
dense Jacobians)and MA28 (for large, sparse systems) are currently supported (see
the options group BasisSystemFactoryStd to select what solver to use
manually). Note that MOOCHO must be configured with MOOCHO_ENABLE_MA28 to
support the MA28 solver.

Warning! This NLP adapter-support software is going to most likely change in a major
way before the next major release of Trilinos. Therefore, it is recommended that, if
possible, users derive their NLPs from the Thyra-based simulation-constrained
interfaces described in the next section Representing Simulation-Constrained Parallel
NLPs through Thyra. However, this set of software is the only currently supported way
to solve certain types of general NLPs and therefore remains for the time being.

See examples above in the section moocho_explicit_nlps_examples_sec.

1.6.2 Representing Simulation-Constrained Parallel NLPs through Thyra

Another type of NLP that can be solved using MOOCHO are simulation-constrained
NLPs where the basis section is known up front. For these types of NLPs, it is
recommended that the NLP be specified through the Thyra::ModelEvaluator

Generated on Wed Feb 8 2012 09:35:48 for MOOCHO by Doxygen

1.6 Representing Nonlinear Programs for MOOCHO to Solve 18

interface and this provides access to a significant linear solver capability through
Trilinos. These types of NLPs can also be solved in single program multiple data
(SPMD) mode in parallel on a massively parallel computer.

The Thyra::ModelEvaluator interface uses a different notation than the
standard MOOCHO NLP notation. The model evaluator notation is:

minimize g(x, p)
subject to f (x, p) = 0

xL ≤ x≤ xU
pL ≤ p≤ pU

where x ∈ℜnx are the state variables, p ∈ℜnp are the optimization parameters,
f (x, p) = 0 are the discrete nonlinear state simulation equations, and g(x, p) is the
scalar-valued objective function. Here the state Jacobian ∂ f

∂x must be square and
nonsingular. The partitioning of variables into state variables x and optimization
variables p must be known a priori and this partitioning can not change during an
optimization solve.

Comparing the MOOCHO notation for optimization problems using variable
decomposition methods which is

minimize f (xD,xI)
subject to c(xD,xI) = 0

xD,L ≤ xD ≤ xD,U
xI,L ≤ xI ≤ xI,U

we can see the mapping between the MOOCHO notation and the
Thyra::ModelEvaluator notation as summarized in the following table:

It is unfortunate that the notation used with the Model Evaluator interfaces and
software are different than those used by MOOCHO. The reason for this change in
notation is that the Model Evaluator had to first appeal to the forward solve community
where f (x, p) = 0 is the standard notation for the parameterized state equation and
changing the notation of all of MOOCHO after the fact to match this would be very
tedious to perform. We can only hope that the user can keep the above mapping of
notation straight between MOOCHO and the Model Evaluator.

Currently, and more so in the near future, a great deal of capability will be automatically
available when a user provides an implementation of the
EpetraExt::ModelEvaluator interface (as shown in the section
moocho_simulation_constrained_nlps_examples_sec). For these types of NLPs, a
great deal of linear solver capability is available through the linear solver and
preconditioners wrappers in the Stratimikos package. In addition, the application
will also have access to many other nonlinear algorithms provided in Trilinos (see the
Trilinos packages NOX, LOCA, and Rythmos).

See examples above in the section
moocho_simulation_constrained_nlps_examples_sec.

Generated on Wed Feb 8 2012 09:35:48 for MOOCHO by Doxygen

file:../../../stratimikos/doc/html/index.html

1.7 Other Trilinos Packages on which MOOCHO Directly Depends 19

1.7 Other Trilinos Packages on which MOOCHO Directly Depends

MOOCHO has direct dependencies on the following Trilinos packages:

• teuchos: This package supplies basic utility classes such as
Teuchos::RCP and Teuchos::BLAS that MOOCHO software is
dependent on.

• rtop: This package supplies the basic interfaces for vector
reduction/transformation operators as well as support code and a library of
pre-written RTOp subclasses. Much of the software in MOOCHO depends on
this code.

MOOCHO also optionally directly depends on the following Trilinos packages:

• thyra: This package supplies interfaces and support software for SPMD and
other types of computing platforms and defines the interface
Thyra::ModelEvaluator for simulation-constrained optimization that
MOOCHO can use to define NLPs.

• epetraext: This package provides an Epetra-specific interface for the model
evaluator called EpetraExt::ModelEvaluator and contains some
concrete examples that are used by MOOCHO.

• stratimikos: This package supplies Thyra-based wrappers for several serial
direct and massively parallel iterative linear solvers and preconditioners.

1.8 Individual MOOCHO Doxygen Collections

Below are links to individual doxygen collections that make up MOOCHO:

• MoochoUtilities: Collection of a small amount of utility code that is
peculiar to MOOCHO. Some of the software that is now in Teuchos such as
Teuchos::RCP and Teuchos::CommandLineProcessor were once in
this collection.

• IterationPack: "Framework" for building iterative algorithms that MOOCHO
is based on.

• RTOpPack: Legacy RTOp code that predates Thyra the Trilinos RTOp package
but it still used by MOOCHO. The current version of the Trilinos RTOp package
was developed from refactored code that once lived in this collection.

• DenseLinAlgPack: A C++ class library for dense, BLAS-compatible, serial
linear algebra that is similar to classes like
Teuchos::SerialDenseVector and

Generated on Wed Feb 8 2012 09:35:48 for MOOCHO by Doxygen

file:../../../teuchos/doc/html/index.html
file:../../../rtop/doc/html/index.html
file:../../../thyra/doc/html/index.html
file:../../../epetraext/doc/html/index.html
file:../../../stratimikos/doc/html/index.html
file:../../src/MoochoUtilities/doc/html/index.html
file:../../src/IterationPack/doc/html/index.html
file:../../src/RTOpPack/doc/html/index.html
file:../../../rtop/doc/html/index.html
file:../../src/DenseLinAlgPack/doc/html/index.html

1.9 Browse all of MOOCHO as a Single Doxygen Collection 20

Teuchos::SerialDenseMatrix. This class library is used exclusively by
MOOCHO to deal with serial dense linear algebra.

• AbstractLinAlgPack: A C++ class library for abstract linear algebra.
These interfaces predate and helped to inspire Thyra but at this point should be
considered legacy software that should only be used within MOOCHO. It is likely
that a future refactoring of MOOCHO will involve largely removing these classes
and using Thyra-based software directly instead.

• NLPInterfacePack: Set of abstract interfaces based on
AbstractLinAlgPack for representing nonlinear programs (NLPs) (i.e.
optimization problems). These interfaces serve a similar role as the
Thyra::ModelEvaluator interface but there are many differences. In the
future, it is likely that these interfaces will be refactored to look more like the
Thyra::ModelEvaluator interface but are likely to remain distinct.

• ConstrainedOptPack: Collection of utility software for building constrained
optimization algorithms that is based on AbstractLinAlgPack. Included
here are interfaces and adapters for QP solvers (with QPSchur being included
by default), line search interfaces and implementations, range/null space
decompositions and other such capabilities.

• MoochoPack: Provides nonlinear optimization algorithms for primarily rSQP
methods based on the IterationPack framework. This is where the real
algorithmic meat of nonlinear programing is found in MOOCHO. This collection
provides the "Facade" class MoochoPack::MoochoSolver.

• MOOCHO/Thyra Adapters: Provides adapter classes for allowing
MOOCHO to solve simulation-constrained optimization problems presented as
Thyra::ModelEvaluator objects. Also included is the higher-level
"Facade" class MoochoPack::MoochoThyraSolver.

1.9 Browse all of MOOCHO as a Single Doxygen Collection

You can browse all of MOOCHO as a single doxygen collection. Warning,
this is not the recommended way to learn about MOOCHO software. However, this is a
good way to browse the directory structure of MOOCHO, to locate
files, etc.

1.10 Links to Other Documentation Collections

• Thyra: This package defines basic interfaces and support software for abstract
numerical algorithms.

• Thyra ANA Operator/Vector Adapters for Epetra: This
software includes the basic adapters needed to wrap Epetra objects and Thyra
objects.

Generated on Wed Feb 8 2012 09:35:48 for MOOCHO by Doxygen

file:../../src/AbstractLinAlgPack/doc/html/index.html
file:../../src/NLPInterfacePack/doc/html/index.html
file:../../src/ConstrainedOptPack/doc/html/index.html
file:../../src/MoochoPack/doc/html/index.html
file:../../thyra/doc/html/index.html
file:../../browser/doc/html/index.html
file:../../browser/doc/html/dirs.html
file:../../browser/doc/html/files.html
file:../../browser/doc/html/files.html
file:../../../thyra/doc/html/index.html
file:../../../epetra/thyra/doc/html/index.html

2 Module Index 21

• Various Thyra Adapters for EpetraExt: Included here are
adapters and interfaces that allow a perspective nonlinear application to specify
everything needed to define a wide range of nonlinear problems in terms by
subclassing an Epetra-based version of the Thyra::ModelEvaluator
interface (called EpetraExt::ModelEvaluator). This software allows an
appropriately defined Epetra-based model to be used to define a Thyra-based
model to be used to define an optimization problem that MOOCHO can then
solve.

• Stratimikos: Unified Wrappers for Thyra Linear
Solver and Preconditioner Capabilities: Stratimikos contains
neatly packaged access to all of the Thyra linear solver and preconditioner
wrappers. Currently, these allow the creation of linear solvers for nearly any
Epetra_RowMatrix object.

2 Module Index

2.1 Modules

Here is a list of all modules:

Sample MOOCHO input and output. 22

Sample MOOCHO Options File 22

Sample MOOCHO Console Output 24

Sample MOOCHO Algorithm Configuration Output (MoochoAlgo.out) 24

Sample MOOCHO Algorithm Summary Output (MoochoSummary.out) 25

Sample MOOCHO Algorithm Journal Output (MoochoJournal.out) 26

3 Module Documentation

Generated on Wed Feb 8 2012 09:35:48 for MOOCHO by Doxygen

file:../../../epetraext/thyra/doc/html/index.html
file:../../../stratimikos/doc/html/index.html
file:../../../stratimikos/doc/html/index.html

3.1 Sample MOOCHO input and output. 22

3.1 Sample MOOCHO input and output.

Collaboration diagram for Sample MOOCHO input and output.:

Sample MOOCHO Options File

Sample MOOCHO Algorithm Configuration Output (MoochoAlgo.out)

Sample MOOCHO Console Output

Sample MOOCHO Algorithm Journal Output (MoochoJournal.out)

Sample MOOCHO input and output.

Sample MOOCHO Algorithm Summary Output (MoochoSummary.out)

Modules

• Sample MOOCHO Options File
• Sample MOOCHO Console Output
• Sample MOOCHO Algorithm Configuration Output (MoochoAlgo.out)
• Sample MOOCHO Algorithm Summary Output (MoochoSummary.out)
• Sample MOOCHO Algorithm Journal Output (MoochoJournal.out)

3.2 Sample MOOCHO Options File

Collaboration diagram for Sample MOOCHO Options File:

Sample MOOCHO Options FileSample MOOCHO input and output.

Generated on Wed Feb 8 2012 09:35:48 for MOOCHO by Doxygen

3.2 Sample MOOCHO Options File 23

Below is a sample MOOCHO options file for some of the typical options that a user
might want to manipulate. The full set of options with documentation are shown here.

begin_options

options_group NLPSolverClientInterface {
max_iter = 20;
max_run_time = 2.0; *** In minutes
opt_tol = 1e-2;
feas_tol = 1e-7;

* journal_output_level = PRINT_NOTHING; * No output to journal from algorithm

* journal_output_level = PRINT_BASIC_ALGORITHM_INFO; * O(1) information usually
journal_output_level = PRINT_ALGORITHM_STEPS; * O(iter) output to journal [default]

* journal_output_level = PRINT_ACTIVE_SET; * O(iter*nact) output to journal

* journal_output_level = PRINT_VECTORS; * O(iter*n) output to journal (lots!)

* journal_output_level = PRINT_ITERATION_QUANTITIES; * O(iter*n*m) output to journal (big lots!)

* null_space_journal_output_level = DEFAULT; * Set to journal_output_level [default]

* null_space_journal_output_level = PRINT_ACTIVE_SET; * O(iter*nact) output to journal

* null_space_journal_output_level = PRINT_VECTORS; * O(iter*(n-m)) output to journal (lots!)
null_space_journal_output_level = PRINT_ITERATION_QUANTITIES; * O(iter*(n-m)^2) output to journal (big lots!)
journal_print_digits = 10;
calc_conditioning = true;
calc_matrix_norms = true; *** (costly?)
calc_matrix_info_null_space_only = true; *** (costly?)

}

options_group DecompositionSystemStateStepBuilderStd {

* null_space_matrix = AUTO; *** Let the solver decide [default]
null_space_matrix = EXPLICIT; *** Compute and store D = -inv(C)*N explicitly

* null_space_matrix = IMPLICIT; *** Perform operations implicitly with C, N (requires adjoints)

* range_space_matrix = AUTO; *** Let the algorithm decide dynamically [default]

* range_space_matrix = COORDINATE; *** Y = [I; 0] (Cheaper computationally)
range_space_matrix = ORTHOGONAL; *** Y = [I; -N’*inv(C’)] (more stable)

}

options_group NLPAlgoConfigMamaJama {

* quasi_newton = AUTO; *** Let solver decide dynamically [default]
quasi_newton = BFGS; *** Dense BFGS

* quasi_newton = LBFGS; *** Limited memory BFGS

* line_search_method = AUTO; *** Let the solver decide dynamically [default]

* line_search_method = NONE; *** Take full steps at every iteration

* line_search_method = DIRECT; *** Use standard Armijo backtracking
line_search_method = FILTER; *** [default] Use the Filter line search method

}

end_options

Generated on Wed Feb 8 2012 09:35:48 for MOOCHO by Doxygen

3.3 Sample MOOCHO Console Output 24

3.3 Sample MOOCHO Console Output

Collaboration diagram for Sample MOOCHO Console Output:

Sample MOOCHO Console OutputSample MOOCHO input and output.

Below is the console output generated by the program ExampleNLPBanded.exe
using the command-line arguments

given the Moocho.opt options file shown here.

Here is the other types of output that is associated with this run:

• Sample MOOCHO Algorithm Configuration Output (MoochoAlgo.out)

• Sample MOOCHO Algorithm Summary Output (MoochoSummary.out)

• Sample MOOCHO Algorithm Journal Output (MoochoJournal.out)

Console output:

3.4 Sample MOOCHO Algorithm Configuration Output (MoochoAlgo.out)

Collaboration diagram for Sample MOOCHO Algorithm Configuration Output
(MoochoAlgo.out):

Sample MOOCHO Algorithm Configuration Output (MoochoAlgo.out)Sample MOOCHO input and output.

Generated on Wed Feb 8 2012 09:35:48 for MOOCHO by Doxygen

3.5 Sample MOOCHO Algorithm Summary Output (MoochoSummary.out) 25

Below is the output file MoochoAlgo.out from the program
ExampleNLPBanded.exe using the command-line arguments

given the Moocho.opt options file shown here.

Here is the other types of output that is associated with this run:

• Sample MOOCHO Console Output

• Sample MOOCHO Algorithm Summary Output (MoochoSummary.out)

• Sample MOOCHO Algorithm Journal Output (MoochoJournal.out)

Output file MoochoAlgo.out:

3.5 Sample MOOCHO Algorithm Summary Output (MoochoSummary.out)

Collaboration diagram for Sample MOOCHO Algorithm Summary Output
(MoochoSummary.out):

Sample MOOCHO input and output. Sample MOOCHO Algorithm Summary Output (MoochoSummary.out)

Below is the output file MoochoSummary.out from the program
ExampleNLPBanded.exe using the command-line arguments

given the Moocho.opt options file shown here.

Here is the other types of output that is associated with this run:

• Sample MOOCHO Console Output

• Sample MOOCHO Algorithm Configuration Output (MoochoAlgo.out)

• Sample MOOCHO Algorithm Journal Output (MoochoJournal.out)

Output file MoochoSummary.out:

Generated on Wed Feb 8 2012 09:35:48 for MOOCHO by Doxygen

3.6 Sample MOOCHO Algorithm Journal Output (MoochoJournal.out) 26

3.6 Sample MOOCHO Algorithm Journal Output (MoochoJournal.out)

Collaboration diagram for Sample MOOCHO Algorithm Journal Output
(MoochoJournal.out):

Sample MOOCHO Algorithm Journal Output (MoochoJournal.out)Sample MOOCHO input and output.

Below is the output file MoochoJournal.out from the program
ExampleNLPBanded.exe using the command-line arguments

given the Moocho.opt options file shown here.

Here is the other types of output that is associated with this run:

• Sample MOOCHO Console Output

• Sample MOOCHO Algorithm Configuration Output (MoochoAlgo.out)

• Sample MOOCHO Algorithm Summary Output (MoochoSummary.out)

Output file MoochoJournal.out:

4 Example Documentation

4.1 ExampleNLPBandedMain.cpp

4.2 NLPThyraEpetraAdvDiffReactOptMain.cpp

Generated on Wed Feb 8 2012 09:35:48 for MOOCHO by Doxygen

4.3 NLPThyraEpetraModelEval4DOptMain.cpp 27

4.3 NLPThyraEpetraModelEval4DOptMain.cpp

4.4 NLPWBCounterExampleMain.cpp

Generated on Wed Feb 8 2012 09:35:48 for MOOCHO by Doxygen

4.4 NLPWBCounterExampleMain.cpp 28

MOOCHO Notation
Thyra::ModelEvaluator
Notation

Thyra::ModelEvaluator
Description

m nx Number of state variables

n−m np Number of optimization
parameters

n nx +np Total number of
optimization variables

xD ∈ℜm x ∈ℜnx State variables

xI ∈ℜn−m p ∈ℜnp Optimization parameters

c(xD,xI) ∈ℜn →ℜm f (x, p)ℜnx+np →ℜnx State equation residual
function

f (xD,xI) ∈ℜn →ℜ g(x, p)ℜnx+np →ℜ Objective function

C ∈ℜm×m ∂ f
∂x ∈ℜnx×nx Nonsingular state

Jacobian

N ∈ℜm×n−m ∂ f
∂ p ∈ℜnx×np Optimization Jacobian

∇D f T ∈ℜ1×m ∂g
∂x ∈ℜ1×nx Derivative of objective

with respect to state
variables

∇I f T ∈ℜ1×n−m ∂g
∂ p ∈ℜ1×np Derivative of objective

with respect to
optimization parameters

Table 1: Mapping of notation between MOOCHO and Thyra::ModelEvaluator
for simulation-constrained optimization problems.

Generated on Wed Feb 8 2012 09:35:48 for MOOCHO by Doxygen

Index

Sample MOOCHO Algorithm
Configuration Output
(MoochoAlgo.out), 23

Sample MOOCHO Algorithm Journal
Output (MoochoJournal.out), 25

Sample MOOCHO Algorithm Summary
Output (MoochoSummary.out),
24

Sample MOOCHO Console Output, 23
Sample MOOCHO input and output., 21
Sample MOOCHO Options File, 21

	MOOCHO: Multi-functional Object-Oriented arCHitecture for Optimization
	Outline
	Introduction
	MOOCHO Mathematical Overview Document
	Hyper-linked HTML version of this Document
	MOOCHO Quickstart
	Setting up a driver program to call a MOOCHO solver
	Running MOOCHO to Solve Optimization Problems

	Representing Nonlinear Programs for MOOCHO to Solve
	Representing General Serial NLPs with Explicit Jacobian Entries
	Representing Simulation-Constrained Parallel NLPs through Thyra

	Other Trilinos Packages on which MOOCHO Directly Depends
	Individual MOOCHO Doxygen Collections
	Browse all of MOOCHO as a Single Doxygen Collection
	Links to Other Documentation Collections

	Module Index
	Modules

	Module Documentation
	Sample MOOCHO input and output.
	Sample MOOCHO Options File
	Sample MOOCHO Console Output
	Sample MOOCHO Algorithm Configuration Output (MoochoAlgo.out)
	Sample MOOCHO Algorithm Summary Output (MoochoSummary.out)
	Sample MOOCHO Algorithm Journal Output (MoochoJournal.out)

	Example Documentation
	ExampleNLPBandedMain.cpp
	NLPThyraEpetraAdvDiffReactOptMain.cpp
	NLPThyraEpetraModelEval4DOptMain.cpp
	NLPWBCounterExampleMain.cpp

