Stokhos Development
Stokhos::HermiteBasis< ordinal_type, value_type > Class Template Reference

Hermite polynomial basis. More...

#include <Stokhos_HermiteBasis.hpp>

Inheritance diagram for Stokhos::HermiteBasis< ordinal_type, value_type >:
[legend]
Collaboration diagram for Stokhos::HermiteBasis< ordinal_type, value_type >:
[legend]

List of all members.

## Public Member Functions

HermiteBasis (ordinal_type p, bool normalize=false)
Constructor.
~HermiteBasis ()
Destructor.
Implementation of Stokhos::OneDOrthogPolyBasis methods
virtual Teuchos::RCP
< OneDOrthogPolyBasis
< ordinal_type, value_type > >
cloneWithOrder (ordinal_type p) const
Clone this object with the option of building a higher order basis.

## Protected Member Functions

HermiteBasis (ordinal_type p, const HermiteBasis &basis)
Copy constructor with specified order.
Implementation of Stokhos::RecurrenceBasis methods
virtual void computeRecurrenceCoefficients (ordinal_type n, Teuchos::Array< value_type > &alpha, Teuchos::Array< value_type > &beta, Teuchos::Array< value_type > &delta) const
Compute recurrence coefficients.

## Detailed Description

### template<typename ordinal_type, typename value_type> class Stokhos::HermiteBasis< ordinal_type, value_type >

Hermite polynomial basis.

Hermite polynomials are defined by the recurrence relationship

with and . The corresponding density function is

This class implements computeRecurrenceCoefficients() using the above formula.

## Constructor & Destructor Documentation

template<typename ordinal_type , typename value_type >
 Stokhos::HermiteBasis< ordinal_type, value_type >::HermiteBasis ( ordinal_type p, bool normalize = false )

Constructor.

Parameters:
 p order of the basis normalize whether polynomials should be given unit norm

## Member Function Documentation

template<typename ordinal_type , typename value_type >
 Teuchos::RCP< Stokhos::OneDOrthogPolyBasis< ordinal_type, value_type > > Stokhos::HermiteBasis< ordinal_type, value_type >::cloneWithOrder ( ordinal_type p ) const [virtual]

Clone this object with the option of building a higher order basis.

This method is following the Prototype pattern (see Design Pattern's textbook). The slight variation is that it allows the order of the polynomial to be modified, otherwise an exact copy is formed. The use case for this is creating basis functions for column indices in a spatially varying adaptive refinement context.

The documentation for this class was generated from the following files:
• Stokhos_HermiteBasis.hpp
• Stokhos_HermiteBasisImp.hpp