Intrepid
Class List
Here are the classes, structs, unions and interfaces with brief descriptions:
Intrepid::AdaptiveSparseGrid< Scalar, UserVector >Builds general adaptive sparse grid rules (Gerstner and Griebel) using the 1D cubature rules in the Intrepid::CubatureLineSorted class
Intrepid::AdaptiveSparseGridInterface< Scalar, UserVector >
Intrepid::apply_tensor< T, N >
Intrepid::apply_tensor3< T, N >
Intrepid::apply_tensor4< T, N >
Intrepid::apply_vector< T, N >
Intrepid::ArrayToolsUtility class that provides methods for higher-order algebraic manipulation of user-defined arrays, such as tensor contractions. For low-order operations, see Intrepid::RealSpaceTools
ASGdata< Scalar, UserVector >
Intrepid::Basis< Scalar, ArrayScalar >An abstract base class that defines interface for concrete basis implementations for Finite Element (FEM) and Finite Volume/Finite Difference (FVD) discrete spaces
Intrepid::Basis_HCURL_HEX_I1_FEM< Scalar, ArrayScalar >Implementation of the default H(curl)-compatible FEM basis of degree 1 on Hexahedron cell
Intrepid::Basis_HCURL_HEX_In_FEM< Scalar, ArrayScalar >Implementation of the default H(div)-compatible FEM basis of degree 1 on Hexahedral cell
Intrepid::Basis_HCURL_QUAD_I1_FEM< Scalar, ArrayScalar >Implementation of the default H(curl)-compatible FEM basis of degree 1 on Quadrilateral cell
Intrepid::Basis_HCURL_QUAD_In_FEM< Scalar, ArrayScalar >Implementation of the default H(div)-compatible FEM basis of degree 1 on Quadrilateral cell
Intrepid::Basis_HCURL_TET_I1_FEM< Scalar, ArrayScalar >Implementation of the default H(curl)-compatible FEM basis of degree 1 on Tetrahedron cell
Intrepid::Basis_HCURL_TET_In_FEM< Scalar, ArrayScalar >Implementation of the default H(curl)-compatible Nedelec (first kind) basis of arbitrary degree on Tetrahedron cell. The lowest order space is indexted with 1 rather than 0. Implements nodal basis of degree n (n>=1) on the reference Tetrahedron cell. The basis has cardinality n*(n+2)*(n+3)/2 and spans an INCOMPLETE polynomial space of degree n. Basis functions are dual to a unisolvent set of degrees-of-freedom (DoF) defined by
Intrepid::Basis_HCURL_TRI_I1_FEM< Scalar, ArrayScalar >Implementation of the default H(curl)-compatible FEM basis of degree 1 on Triangle cell
Intrepid::Basis_HCURL_TRI_In_FEM< Scalar, ArrayScalar >Implementation of the default H(curl)-compatible Nedelec (first kind) basis of arbitrary degree on Triangle cell. The lowest order space is indexed with 1 rather than 0. Implements nodal basis of degree n (n>=1) on the reference Triangle cell. The basis has cardinality n(n+2) and spans an INCOMPLETE polynomial space of degree n. Basis functions are dual to a unisolvent set of degrees-of-freedom (DoF) defined by
Intrepid::Basis_HCURL_WEDGE_I1_FEM< Scalar, ArrayScalar >Implementation of the default H(curl)-compatible FEM basis of degree 1 on Wedge cell
Intrepid::Basis_HDIV_HEX_I1_FEM< Scalar, ArrayScalar >Implementation of the default H(div)-compatible FEM basis of degree 1 on Hexahedron cell
Intrepid::Basis_HDIV_HEX_In_FEM< Scalar, ArrayScalar >Implementation of the default H(div)-compatible FEM basis of degree 1 on Hexahedral cell
Intrepid::Basis_HDIV_QUAD_I1_FEM< Scalar, ArrayScalar >Implementation of the default H(div)-compatible FEM basis of degree 1 on Quadrilateral cell
Intrepid::Basis_HDIV_QUAD_In_FEM< Scalar, ArrayScalar >Implementation of the default H(div)-compatible FEM basis of degree 1 on Quadrilateral cell
Intrepid::Basis_HDIV_TET_I1_FEM< Scalar, ArrayScalar >Implementation of the default H(div)-compatible FEM basis of degree 1 on Tetrahedron cell
Intrepid::Basis_HDIV_TET_In_FEM< Scalar, ArrayScalar >Implementation of the default H(div)-compatible Raviart-Thomas basis of arbitrary degree on Tetrahedron cell. The lowest order instance starts with n. Implements the nodal basis of degree n the reference Tetrahedron cell. The basis has cardinality n(n+1)(n+3)/2 and spans an INCOMPLETE polynomial space of degree n. Basis functions are dual to a unisolvent set of degrees-of-freedom (DoF) defined and enumerated as follows:
Intrepid::Basis_HDIV_TRI_I1_FEM< Scalar, ArrayScalar >Implementation of the default H(div)-compatible FEM basis of degree 1 on a Triangle cell
Intrepid::Basis_HDIV_TRI_In_FEM< Scalar, ArrayScalar >Implementation of the default H(div)-compatible Raviart-Thomas basis of arbitrary degree on Triangle cell
Intrepid::Basis_HDIV_WEDGE_I1_FEM< Scalar, ArrayScalar >Implementation of the default H(div)-compatible FEM basis of degree 1 on Wedge cell
Intrepid::Basis_HGRAD_HEX_C1_FEM< Scalar, ArrayScalar >Implementation of the default H(grad)-compatible FEM basis of degree 1 on Hexahedron cell
Intrepid::Basis_HGRAD_HEX_C2_FEM< Scalar, ArrayScalar >Implementation of the default H(grad)-compatible FEM basis of degree 2 on Hexahedron cell
Intrepid::Basis_HGRAD_HEX_Cn_FEM< Scalar, ArrayScalar >Implementation of the default H(grad)-compatible FEM basis of degree 2 on Hexahedron cell
Intrepid::Basis_HGRAD_LINE_C1_FEM< Scalar, ArrayScalar >Implementation of the default H(grad)-compatible FEM basis of degree 1 on Line cell
Intrepid::Basis_HGRAD_LINE_Cn_FEM< Scalar, ArrayScalar >Implementation of the locally H(grad)-compatible FEM basis of variable order on the [-1,1] reference line cell, using Lagrange polynomials
Intrepid::Basis_HGRAD_LINE_Cn_FEM_JACOBI< Scalar, ArrayScalar >Implementation of the locally H(grad)-compatible FEM basis of variable order on the [-1,1] reference line cell, using Jacobi polynomials
Intrepid::Basis_HGRAD_POLY_C1_FEM< Scalar, ArrayScalar >
Intrepid::Basis_HGRAD_QUAD_C1_FEM< Scalar, ArrayScalar >Implementation of the default H(grad)-compatible FEM basis of degree 1 on Quadrilateral cell
Intrepid::Basis_HGRAD_QUAD_C2_FEM< Scalar, ArrayScalar >Implementation of the default H(grad)-compatible FEM basis of degree 2 on Quadrilateral cell
Intrepid::Basis_HGRAD_QUAD_Cn_FEM< Scalar, ArrayScalar >
Intrepid::Basis_HGRAD_TET_C1_FEM< Scalar, ArrayScalar >Implementation of the default H(grad)-compatible FEM basis of degree 1 on Tetrahedron cell
Intrepid::Basis_HGRAD_TET_C2_FEM< Scalar, ArrayScalar >Implementation of the default H(grad)-compatible FEM basis of degree 2 on Tetrahedron cell
Intrepid::Basis_HGRAD_TET_Cn_FEM< Scalar, ArrayScalar >Implementation of the default H(grad)-compatible Lagrange basis of arbitrary degree on Tetrahedron cell
Intrepid::Basis_HGRAD_TET_Cn_FEM_ORTH< Scalar, ArrayScalar >Implementation of the default H(grad)-compatible orthogonal basis of arbitrary degree on tetrahedron
Intrepid::Basis_HGRAD_TET_COMP12_FEM< Scalar, ArrayScalar >
Intrepid::Basis_HGRAD_TRI_C1_FEM< Scalar, ArrayScalar >Implementation of the default H(grad)-compatible FEM basis of degree 1 on Triangle cell
Intrepid::Basis_HGRAD_TRI_C2_FEM< Scalar, ArrayScalar >Implementation of the default H(grad)-compatible FEM basis of degree 2 on Triangle cell
Intrepid::Basis_HGRAD_TRI_Cn_FEM< Scalar, ArrayScalar >Implementation of the default H(grad)-compatible Lagrange basis of arbitrary degree on Triangle cell
Intrepid::Basis_HGRAD_TRI_Cn_FEM_ORTH< Scalar, ArrayScalar >Implementation of the default H(grad)-compatible orthogonal basis (Dubiner) of arbitrary degree on triangle
Intrepid::Basis_HGRAD_WEDGE_C1_FEM< Scalar, ArrayScalar >Implementation of the default H(grad)-compatible FEM basis of degree 1 on Wedge cell
Intrepid::Basis_HGRAD_WEDGE_C2_FEM< Scalar, ArrayScalar >Implementation of the default H(grad)-compatible FEM basis of degree 2 on Wedge cell
Intrepid::CartesianParametrization< T, N >
Intrepid::CellTools< Scalar >A stateless class for operations on cell data. Provides methods for:
Intrepid::check_static< D >Validate dimension
Intrepid::Cubature< Scalar, ArrayPoint, ArrayWeight >Defines the base class for cubature (integration) rules in Intrepid
Intrepid::CubatureCompositeTet< Scalar, ArrayPoint, ArrayWeight >Defines integration rules for the composite tetrahedron
Intrepid::CubatureDirect< Scalar, ArrayPoint, ArrayWeight >Defines direct cubature (integration) rules in Intrepid
Intrepid::CubatureDirectLineGauss< Scalar, ArrayPoint, ArrayWeight >Defines Gauss integration rules on a line
Intrepid::CubatureDirectTetDefault< Scalar, ArrayPoint, ArrayWeight >Defines direct integration rules on a tetrahedron
Intrepid::CubatureDirectTriDefault< Scalar, ArrayPoint, ArrayWeight >Defines direct integration rules on a triangle
Intrepid::CubatureGenSparse< Scalar, dimension_, ArrayPoint, ArrayWeight >
Intrepid::CubatureLineSorted< Scalar, ArrayPoint, ArrayWeight >Utilizes cubature (integration) rules contained in the library sandia_rules (John Burkardt, Scientific Computing, Florida State University) within Intrepid
Intrepid::CubaturePolygon< Scalar, ArrayPoint, ArrayWeight >
Intrepid::CubaturePolylib< Scalar, ArrayPoint, ArrayWeight >Utilizes cubature (integration) rules contained in the library Polylib (Spencer Sherwin, Aeronautics, Imperial College London) within Intrepid
Intrepid::CubatureSparse< Scalar, dimension_, ArrayPoint, ArrayWeight >
Intrepid::CubatureTemplateTemplate for the cubature rules used by Intrepid. Cubature template consists of cubature points and cubature weights. Intrepid provides a collection of cubature templates for most standard cell topologies. The templates are defined in reference coordinates using a standard reference cell for each canonical cell type. Cubature points are always specified by a triple of (X,Y,Z) coordinates even if the cell dimension is less than 3. The unused dimensions should be padded by zeroes
Intrepid::CubatureTensor< Scalar, ArrayPoint, ArrayWeight >Defines tensor-product cubature (integration) rules in Intrepid
Intrepid::CubatureTensorSorted< Scalar, ArrayPoint, ArrayWeight >Utilizes 1D cubature (integration) rules contained in the library sandia_rules (John Burkardt, Scientific Computing, Florida State University) within Intrepid
Intrepid::DefaultCubatureFactory< Scalar, ArrayPoint, ArrayWeight >A factory class that generates specific instances of cubatures
Intrepid::dimension_add< N, P >Manipulation of static and dynamic dimensions
Intrepid::dimension_add< DYNAMIC, P >
Intrepid::dimension_const< N, C >Set to constant value if not dynamic
Intrepid::dimension_const< DYNAMIC, C >
Intrepid::dimension_power< D, O >Integer power template restricted to orders defined below
Intrepid::dimension_power< D, 1 >
Intrepid::dimension_power< D, 2 >
Intrepid::dimension_power< D, 3 >
Intrepid::dimension_power< D, 4 >
Intrepid::dimension_sqrt< N >
Intrepid::dimension_sqrt< 1 >
Intrepid::dimension_sqrt< 16 >
Intrepid::dimension_sqrt< 4 >
Intrepid::dimension_sqrt< 9 >
Intrepid::dimension_sqrt< DYNAMIC >
Intrepid::dimension_square< N >Integer square for manipulations between 2nd and 4rd-order tensors
Intrepid::dimension_square< 1 >
Intrepid::dimension_square< 2 >
Intrepid::dimension_square< 3 >
Intrepid::dimension_square< 4 >
Intrepid::dimension_square< DYNAMIC >
Intrepid::dimension_string< N >
Intrepid::dimension_string< 1 >
Intrepid::dimension_string< 2 >
Intrepid::dimension_string< 3 >
Intrepid::dimension_string< 4 >
Intrepid::dimension_string< DYNAMIC >
Intrepid::dimension_subtract< N, P >
Intrepid::dimension_subtract< DYNAMIC, P >
Intrepid::DofCoordsInterface< ArrayScalar >This is an interface class for bases whose degrees of freedom can be associated with spatial locations in a reference element (typically interpolation points for interpolatory bases)
Intrepid::Duet< T >
Intrepid::FieldContainer< Scalar, ArrayTypeId >Implementation of a templated lexicographical container for a multi-indexed scalar quantity. FieldContainer object stores a multi-indexed scalar value using the lexicographical index ordering: the rightmost index changes first and the leftmost index changes last. FieldContainer can be viewed as a dynamic multidimensional array whose values can be accessed in two ways: by their multi-index or by their enumeration, using an overloaded [] operator. The enumeration of a value gives the sequential order of the multi-indexed value in the container. The number of indices, i.e., the rank of the container is unlimited. For containers with ranks up to 5 many of the methods are optimized for faster execution. An overloaded () operator is also provided for such low-rank containers to allow element access by multi-index without having to create an auxiliary array for the multi-index
Intrepid::FunctionSpaceToolsDefines expert-level interfaces for the evaluation of functions and operators in physical space (supported for FE, FV, and FD methods) and FE reference space; in addition, provides several function transformation utilities
Intrepid::FunctionSpaceToolsInPlaceDefines expert-level interfaces for the evaluation of functions and operators in physical space (supported for FE, FV, and FD methods) and FE reference space; in addition, provides several function transformation utilities
Intrepid::HGRAD_POLY_C1_FEMImplementation of the default H(grad) compatible FEM basis of degree 1 on a polygon cell
Intrepid::IntrepidBurkardtRulesProviding integration rules, created by John Burkardt, Scientific Computing, Florida State University, modified and redistributed by D. Kouri
Intrepid::IntrepidPolylibProviding orthogonal polynomial calculus and interpolation, created by Spencer Sherwin, Aeronautics, Imperial College London, modified and redistributed by D. Ridzal
Intrepid::is_tensor< T >2nd-order tensor
Intrepid::is_tensor3< T >3rd-order tensor
Intrepid::is_tensor3< Tensor3< T, N > >
Intrepid::is_tensor4< T >4th-order tensor
Intrepid::is_tensor4< Tensor4< T, N > >
Intrepid::is_tensor< Tensor< T, N > >
Intrepid::is_vector< T >Vector
Intrepid::is_vector< Vector< T, N > >
Sacado::IsADType< Tensor3< T, N > >
Sacado::IsADType< Tensor4< T, N > >
Sacado::IsADType< Tensor< T, N > >
Sacado::IsADType< Vector< T, N > >
Sacado::IsEqual< Tensor3< T, N > >
Sacado::IsEqual< Tensor4< T, N > >
Sacado::IsEqual< Tensor< T, N > >
Sacado::IsEqual< Vector< T, N > >
Sacado::IsScalarType< Tensor3< T, N > >
Sacado::IsScalarType< Tensor4< T, N > >
Sacado::IsScalarType< Tensor< T, N > >
Sacado::IsScalarType< Vector< T, N > >
Sacado::IsStaticallySized< Tensor3< T, DYNAMIC > >
Sacado::IsStaticallySized< Tensor3< T, N > >
Sacado::IsStaticallySized< Tensor4< T, DYNAMIC > >
Sacado::IsStaticallySized< Tensor4< T, N > >
Sacado::IsStaticallySized< Tensor< T, DYNAMIC > >
Sacado::IsStaticallySized< Tensor< T, N > >
Sacado::IsStaticallySized< Vector< T, DYNAMIC > >
Sacado::IsStaticallySized< Vector< T, N > >
Intrepid::order_1234< T >Tensors from 1st to 4th order
Intrepid::order_1234< Tensor3< T, N > >
Intrepid::order_1234< Tensor4< T, N > >
Intrepid::order_1234< Tensor< T, N > >
Intrepid::order_1234< Vector< T, N > >
Intrepid::OrthgonalBasesBasic implementation of general orthogonal polynomials on a range of shapes, including the triangle, and tetrahedron
Intrepid::OrthogonalBases
Intrepid::ParametricGrid< T, N >
Intrepid::PointToolsUtility class that provides methods for calculating distributions of points on different cells
Intrepid::ProductTopologyUtility class that provides methods for calculating distributions of points on different cells
Intrepid::ProjectiveParametrization< T, N >
Sacado::Promote< complex< double >, Index >
Sacado::Promote< complex< float >, Index >
Sacado::Promote< double, Index >Specialization of Promote for Index
Sacado::Promote< float, Index >
Sacado::Promote< Index, complex< double > >
Sacado::Promote< Index, complex< float > >
Sacado::Promote< Index, double >
Sacado::Promote< Index, float >
Intrepid::RealSpaceTools< Scalar >Implementation of basic linear algebra functionality in Euclidean space
Sacado::ScalarType< Tensor3< T, N > >Sacado traits specializations for Tensor3
Sacado::ScalarType< Tensor4< T, N > >Sacado traits specializations for Tensor4
Sacado::ScalarType< Tensor< T, N > >Sacado traits specializations for Tensor
Sacado::ScalarType< Vector< T, N > >Sacado traits specializations for Vector
Sacado::ScalarValue< Tensor3< T, N > >
Sacado::ScalarValue< Tensor4< T, N > >
Sacado::ScalarValue< Tensor< T, N > >
Sacado::ScalarValue< Vector< T, N > >
Intrepid::SGNodes< Scalar, D, ArrayPoint, ArrayWeight >
Intrepid::SGPoint< Scalar, D >
Intrepid::SphericalParametrization< T, N >
StdVector< Scalar >
Intrepid::StereographicParametrization< T, N >
Intrepid::Storage< T, N >
Intrepid::Storage< T, DYNAMIC >
Sacado::StringName< Tensor3< T, N > >
Sacado::StringName< Tensor4< T, N > >
Sacado::StringName< Tensor< T, N > >
Sacado::StringName< Vector< T, N > >
Intrepid::TabulatorTet< Scalar, ArrayScalar, derivOrder >This is an internal class with a static member function for tabulating derivatives of orthogonal expansion functions
Intrepid::TabulatorTet< Scalar, ArrayScalar, 0 >
Intrepid::TabulatorTet< Scalar, ArrayScalar, 1 >
Intrepid::TabulatorTri< Scalar, ArrayScalar, derivOrder >This is an internal class with a static member function for tabulating derivatives of orthogonal expansion functions
Intrepid::TabulatorTri< Scalar, ArrayScalar, 0 >
Intrepid::TabulatorTri< Scalar, ArrayScalar, 1 >
Intrepid::TangentParametrization< T, N >
Intrepid::Tensor< T, N >
Intrepid::Tensor3< T, N >
Intrepid::tensor3_store< T, N >
Intrepid::Tensor4< T, N >
Intrepid::tensor4_store< T, N >
Intrepid::tensor_store< T, N >
Intrepid::TensorBase< T, Store >
Intrepid::TensorBasis< Scalar, ArrayScalar >An abstract base class that defines interface for bases that are tensor products of simpler bases
Intrepid::TensorProductSpaceToolsDefines expert-level interfaces for the evaluation, differentiation and integration of finite element-functions defined by tensor products of one-dimensional spaces. These are useful in implementing spectral element methods
Intrepid::Triplet< T >
Sacado::Value< Tensor3< T, N > >
Sacado::Value< Tensor4< T, N > >
Sacado::Value< Tensor< T, N > >
Sacado::Value< Vector< T, N > >
Sacado::ValueType< Tensor3< T, N > >
Sacado::ValueType< Tensor4< T, N > >
Sacado::ValueType< Tensor< T, N > >
Sacado::ValueType< Vector< T, N > >
Intrepid::Vector< T, N >
Intrepid::vector_store< T, N >