ML Version of the Day
/* ******************************************************************** */
/* See the file COPYRIGHT for a complete copyright notice, contact      */
/* person and disclaimer.                                               */        
/* ******************************************************************** */

// Goal of this example is to present the usage of the
// ML_Epetra::MultiLevelOperator class. This class should be used if the
// user wants to build all the ML components by him/herself (starting
// from an Epetra_RowMatrix), then use
// the resulting ML preconditioner within AztecOO.
// This file creates a matrix from the Galeri package,
// then solves the corresponding linear system using ML as a preconditioner. 
// From the command line, you may try something like that:
// $ mpirun -np 4 ./ml_operator.exe
// For more options for Galeri, please consult the Galeri documentation.
// \author Marzio Sala, ETHZ/COLAB
// \date Last modified on 28-Oct-05

#include "ml_include.h"

#if defined(HAVE_ML_EPETRA) && defined(HAVE_ML_GALERI) && defined(HAVE_ML_AZTECOO)

#ifdef HAVE_MPI
#include "mpi.h"
#include "Epetra_MpiComm.h"
#include "Epetra_SerialComm.h"
#include "Epetra_Map.h"
#include "Epetra_Vector.h"
#include "Epetra_LinearProblem.h"
#include "Epetra_Time.h"
#include "AztecOO.h"
#include "Galeri_Maps.h"
#include "Galeri_CrsMatrices.h"
#include "ml_epetra_utils.h"
#include "ml_MultiLevelOperator.h"

using namespace ML_Epetra;
using namespace Galeri;

// =========== //
// main driver //
// =========== //

int main(int argc, char *argv[])
#ifdef HAVE_MPI
  Epetra_MpiComm Comm(MPI_COMM_WORLD);
  Epetra_SerialComm Comm;
  Epetra_Time Time(Comm);

  // Creates the linear problem using the Galeri package. 
  // The grid has nx x ny nodes, divided into
  // mx x my subdomains, each assigned to a different processor.
  int nx = 8;
  int ny = 8 * Comm.NumProc();

  Teuchos::ParameterList GaleriList;
  GaleriList.set("nx", nx);
  GaleriList.set("ny", ny);
  GaleriList.set("mx", 1);
  GaleriList.set("my", Comm.NumProc());

  Epetra_Map* Map = CreateMap("Cartesian2D", Comm, GaleriList);
  Epetra_CrsMatrix* A = CreateCrsMatrix("Laplace2D", Map, GaleriList);

  Epetra_Vector LHS(*Map); LHS.Random();
  Epetra_Vector RHS(*Map); RHS.PutScalar(0.0);

  Epetra_LinearProblem Problem(A, &LHS, &RHS);

  // Construct a solver object for this problem
  AztecOO solver(Problem);
  // ================= MultiLevelOperator SECTION ========================

  // this is the "developers' way": each of the ML components
  // has to be properly created and configured. If you are
  // looking for an easier way to do this, try using the
  // ML_Epetra::MultiLevelPreconditioner class.

  int nLevels = 10;            // maximum number of levels
  int maxMgLevels = 6;         // 
  ML_Set_PrintLevel(10);       // print level (0 silent, 10 verbose)
  ML* ml_handle;               // container of all ML' data
  ML_Create(&ml_handle, maxMgLevels);

  // convert to epetra matrix, put finest matrix into
  // position maxMgLevels - 1 of the hierarchy. NOTE: the matrix
  // is only wrapped (that is, a suitable getrow() function is used),
  // so data in the linear system matrix are NOT replicated.
  EpetraMatrix2MLMatrix(ml_handle, maxMgLevels-1, A);
  // create an Aggregate object; this will contain information
  // about the aggregation process for each level
  ML_Aggregate *agg_object;
  // select coarsening scheme. 

  // generate the hierarchy. We decided to use decreasing ordering;
  // one can also use ML_INCREASING (in this case, you need to replace
  // maxMgLevels-1 with 0 in call to EpetraMatrix2MLMatrix())
  nLevels = ML_Gen_MGHierarchy_UsingAggregation(ml_handle, maxMgLevels-1,
                        ML_DECREASING, agg_object);

  // define the ID of the coarsest level
  int coarsestLevel = maxMgLevels - nLevels;

  // set up some smoothers. Here we suppose a symmetric problem
  int nits = 1;
  for (int level = maxMgLevels-1; level > coarsestLevel; level--)
    ML_Gen_Smoother_Cheby(ml_handle, level, ML_BOTH, 30., 3);

  // simple coarse solver. You may want to use Amesos to access
  // to a large variety of direct solvers, serial and parallel
  ML_Gen_Smoother_GaussSeidel(ml_handle, coarsestLevel, ML_BOTH, 
                              nits, ML_DEFAULT);
  // generate the solver
  ML_Gen_Solver(ml_handle, ML_MGV, maxMgLevels-1, coarsestLevel);
  // create an Epetra_Operator based on the previously created
  // hierarchy
  MultiLevelOperator MLPrec(ml_handle, Comm, *Map, *Map);

  // ========== End of MultiLevelOperator SECTION ========================
  // tell AztecOO to use ML as preconditioner with GMRES, output
  // every 16 iterations, then solve with 500 maximum iterations and
  // tolerance of 1e-5.
  solver.SetAztecOption(AZ_solver, AZ_gmres);
  solver.SetAztecOption(AZ_output, 16);
  solver.Iterate(500, 1e-8);

  // The following is a check to verify that the real residual is small

  double residual;
  if (Comm.MyPID() == 0) 
    cout << "||b-Ax||_2 = " << residual << endl;
    cout << "Total Time = " << Time.ElapsedTime() << endl;


  delete A;
  delete Map;

  // for testing purposes only
  if (residual > 1e-5)

#ifdef HAVE_MPI



#include <stdlib.h>
#include <stdio.h>
#ifdef HAVE_MPI
#include "mpi.h"

int main(int argc, char *argv[])
#ifdef HAVE_MPI

  puts("Please configure ML with:");

#ifdef HAVE_MPI
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Friends