// ************************************************************************
//               ML: A Multilevel Preconditioner Package
//                 Copyright (2002) Sandia Corporation
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// Lesser General Public License for more details.
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux ( 
// ************************************************************************

// Goal of this example is to present the basic usage of
// the ML_Epetra::MultiLevelPreconditioner class.
// The example builds a simple matrix and solves the corresponding
// linear system using AztecOO and ML as a preconditioner. It finally
// checks the accuracy of the computed solution.
// The problem should converge as follows:
// proc       iterations       condition number
//   1             14               1.78
//   2             15               2.39
//   4             15               2.20

// \author Marzio Sala, SNL 9214
// \data Last modified on 19-Jan-05

#include "ml_include.h"

// The C++ interface of ML (more precisely,
// ML_Epetra::MultiLevelPreconditioner), required Trilinos to be
// configured with --enable-epetra --enable-teuchos. This example
// required --enable-triutils (for the definition of the linear systems)

#if defined(HAVE_ML_EPETRA) && defined(HAVE_ML_TEUCHOS) && defined(HAVE_ML_TRIUTILS) && defined(HAVE_ML_AZTECOO)

// epetra objects
#ifdef HAVE_MPI
#include "mpi.h"
#include "Epetra_MpiComm.h"
#include "Epetra_SerialComm.h"
#include "Epetra_Map.h"
#include "Epetra_Vector.h"
#include "Epetra_CrsMatrix.h"
#include "Epetra_LinearProblem.h"
// required to build the example matrix
#include "Trilinos_Util_CrsMatrixGallery.h"
// required by the linear system solver
#include "AztecOO.h"
// required by ML
#include "ml_MultiLevelPreconditioner.h"

using namespace Teuchos;
using namespace Trilinos_Util;

// ============== //
// example driver //
// ============== //

int main(int argc, char *argv[])
#ifdef HAVE_MPI
  Epetra_MpiComm Comm(MPI_COMM_WORLD);
  Epetra_SerialComm Comm;

  // Create the linear problem using the class `Trilinos_Util::CrsMatrixGallery.'
  // Several matrix examples are supported; please refer to the
  // Trilinos tutorial for more details.
  // Most of the examples using the ML_Epetra::MultiLevelPreconditioner
  // class are based on Epetra_CrsMatrix. Example
  // `ml_preconditioner_vbr.cpp' shows how to define a
  // Epetra_VbrMatrix.
  // `laplace_2d' is a symmetric matrix; an example of non-symmetric
  // matrix is `recirc_2d' (advection-diffusion in a box, with
  // recirculating flow). In both cases, the global number of nodes 
  // must be a square number

  CrsMatrixGallery Gallery("laplace_2d", Comm);
  Gallery.Set("problem_size", 10000);
  // The following methods of CrsMatrixGallery are used to get pointers
  // to internally stored Epetra_RowMatrix and Epetra_LinearProblem.

  Epetra_RowMatrix * A = Gallery.GetMatrix();
  Epetra_LinearProblem * Problem = Gallery.GetLinearProblem();

  // As we wish to use AztecOO, we need to construct a solver object for this problem
  AztecOO solver(*Problem);

  // =========================== begin of ML part ===========================
  // create a parameter list for ML options
  ParameterList MLList;

  // set defaults for classic smoothed aggregation. After this class,
  // MLList will contain the default values for the ML parameters,
  // as required by typical smoothed aggregation for symmetric systems.
  // Other sets of parameters are available for non-symmetric systems
  // ("DD" and "DD-ML"), and for the Maxwell equations ("maxwell").
  // overwrite some parameters. Please refer to the user's guide
  // for more information
  // some of the parameters do not differ from their default value,
  // and they are here reported for the sake of clarity
  // maximum number of levels
  MLList.set("max levels",5);
  MLList.set("increasing or decreasing","decreasing");

  // use Uncoupled scheme to create the aggregate,
  // from level 3 use the better but more expensive MIS
  MLList.set("aggregation: type", "Uncoupled");
  MLList.set("aggregation: type (level 3)", "MIS");

  // smoother is symmetric Gauss-Seidel. Example file 
  // ml_2level_DD.cpp shows how to use AZTEC's preconditioners as smoothers
  MLList.set("smoother: type","symmetric Gauss-Seidel");

  // use both pre and post smoothing
  MLList.set("smoother: pre or post", "both");

  // solve with serial direct solver KLU
  MLList.set("coarse: type","Amesos-KLU");
  // this is for testing purposes only, you should have 
  // a direct solver for the coarse problem (either Amesos, or the SuperLU/
  // SuperLU_DIST interface of ML)
  MLList.set("aggregation: type", "MIS");
  MLList.set("smoother: type","Jacobi");
  MLList.set("coarse: type","Jacobi");

  // create the preconditioning object. We suggest to use `new' and
  // `delete' because the destructor contains some calls to MPI (as
  // required by ML and possibly Amesos). This is an issue only if the
  // destructor is called **after** MPI_Finalize().

  ML_Epetra::MultiLevelPreconditioner * MLPrec = 
    new ML_Epetra::MultiLevelPreconditioner(*A, MLList);

  // verify unused parameters on process 0 (put -1 to print on all
  // processes)

  // =========================== end of ML part =============================
  // tell AztecOO to use the ML preconditioner, specify the solver 
  // and the output, then solve with 500 maximum iterations and 1e-12 
  // of tolerance (see AztecOO's user guide for more details)
  solver.SetAztecOption(AZ_solver, AZ_cg_condnum);
  solver.SetAztecOption(AZ_output, 32);
  solver.Iterate(500, 1e-12);

  // destroy the preconditioner
  delete MLPrec;
  // compute the real residual

  double residual, diff;
  if( Comm.MyPID()==0 ) {
    cout << "||b-Ax||_2 = " << residual << endl;
    cout << "||x_exact - x||_2 = " << diff << endl;

  // for testing purposes
  if (residual > 1e-5)

#ifdef HAVE_MPI



#include <stdlib.h>
#include <stdio.h>
#ifdef HAVE_MPI
#include "mpi.h"

int main(int argc, char *argv[])
#ifdef HAVE_MPI

  puts("Please configure ML with --enable-epetra --enable-teuchos");
  puts("--enable-aztecoo --enable-triutils");

#ifdef HAVE_MPI

#endif /* #if defined(HAVE_ML_EPETRA) && defined(HAVE_ML_TEUCHOS) && defined(HAVE_ML_TRIUTILS) && defined(HAVE_ML_AZTECOO) */

Generated on Thu Sep 18 12:42:34 2008 for ML by doxygen