BrusselatorProblemInterface Class Reference

LOCA-LAPACK problem interface for the Brussselator problem. More...

#include <BrusselatorProblemInterface.H>

Inheritance diagram for BrusselatorProblemInterface:

Collaboration diagram for BrusselatorProblemInterface:
List of all members.

Public Member Functions

 BrusselatorProblemInterface (int N, double a, double b, double d1, double d2, ofstream &file)
 Constructor. Also generates an initial guess.
 ~BrusselatorProblemInterface ()
const NOX::LAPACK::VectorgetInitialGuess ()
 Returns initial guess.
bool computeF (NOX::LAPACK::Vector &f, const NOX::LAPACK::Vector &x)
 Evaluates residual.
bool computeJacobian (NOX::LAPACK::Matrix &J, const NOX::LAPACK::Vector &x)
 Evalues jacobian.
void setParams (const LOCA::ParameterVector &p)
 Sets parameters.
void printSolution (const NOX::LAPACK::Vector &x, const double conParam)
 Prints solution after successful step.
virtual bool computeMass (NOX::LAPACK::Matrix &M, const NOX::LAPACK::Vector &x)
 Compute mass matrix. Returns true if computation was successful.

Detailed Description

LOCA-LAPACK problem interface for the Brussselator problem.

BrusselatorProblemInterface implements the LOCA::LAPACK::Interface for a 1D finite-difference discretization of the Brusselator problem:

\[ \frac{\partial T}{\partial t} = D_1\frac{\partial^2 T}{\partial x^2} + \alpha - (\beta + 1)T + T^2 C \\ \frac{\partial C}{\partial t} = D_2\frac{\partial^2 T}{\partial x^2} + \beta T - T^2 C \]

subject to the boundar conditions $T(0) = T(1) = \alpha$, $C(0) = C(1) = \beta/\alpha$. The parameters are $\alpha$, $\beta$, $D_1$, $D_2$ and $n$, the size of the discretization.

The documentation for this class was generated from the following files:
Generated on Thu Sep 18 12:42:22 2008 for NOX by doxygen