ML_FiniteElements Namespace Reference

Default namespace for ML finite element example. More...


class  ML_FiniteElements::AbstractGrid
 Abstract interface to access finite element grids. More...
class  ML_FiniteElements::AbstractProblem
 Abstract interface to define linear problems. More...
class  ML_FiniteElements::AbstractQuadrature
 Interfaces for quadrature over elements. More...
class  ML_FiniteElements::AbstractVariational
 Pure virtual class that defines the variational form. More...
class  ML_FiniteElements::GalerkinVariational< T >
 Defines a pure Galerkin variational form of a scalar PDE. More...
class  ML_FiniteElements::HexCubeGrid
 Creates a grid composed by hexahedra in a cube. More...
class  ML_FiniteElements::HexQuadrature
 Quadrature formula on hexahedra. More...
class  ML_FiniteElements::LinearProblem
 Basic implementation of scalar finite element problem. More...
class  ML_FiniteElements::QuadQuadrature
 Quadrature formula on quadrilaterals. More...
class  ML_FiniteElements::QuadRectangleGrid
 Creates a grid with quadrilaterals on a rectangle. More...
class  ML_FiniteElements::SUPGVariational< T >
 SUPG discretization of an advection-diffusion PDE. More...
class  ML_FiniteElements::TetCubeGrid
 Creates a grid with tetrahedral elements in a cube. More...
class  ML_FiniteElements::TetQuadrature
 Quadrature formula on tetrahedra. More...
class  ML_FiniteElements::TRIANGLEGrid
class  ML_FiniteElements::TriangleQuadrature
 Quadrature formula on triangles. More...
class  ML_FiniteElements::TriangleRectangleGrid
 Creates a grid composed by triangles, the domain is a rectangle. More...


const int ML_INTERNAL = 0
const int ML_BOTTOM = -1
const int ML_RIGHT = -2
const int ML_TOP = -3
const int ML_LEFT = -4
const int ML_FRONT = -5
const int ML_REAR = -6
const int ML_DIRICHLET = 1000
const int ML_NEUMANN = 1001

Detailed Description

Default namespace for ML finite element example.

The ML_FiniteElements namespace contains all the classes and the examples that show a possible structure for a finite element code using Epetra and ML.

Scalar second-order, symmetric and non-symmetric PDEs of type

\[ - \eps \Delta u + b * \grad u + \sigma u = f on \Omega \]

\[ u = g on \partial \Omega \]

can be discretized using this example. Neumann boundary conditions require minimal changes to the code. $\Omega$ must be a 2D or a 3D domain, discretized using triangles, quadrilaterals, tetrahedra or hexahedra. The code can be quite easily extended to tackle vector problems, using the same finite element space for all unknowns.

Two discretizations are available:

The code is based on the following pure virtual classes:

The solution can be visualized using MEDIT (see web page for details and download).

A nice feature of this small example is that some grids can be created on-the-fly, with no need of input files. The following domains can be triangulated:

These classes are valid for both serial and parallel runs.

An interface to triangle (see for more details and download) is under development; the interested user can modify the file ml_TRIANGLEGrid.h. This interface is currently working for serial runs only.

The interested user should look to the following examples, all located in ml/examples/FiniteElements:

Marzio Sala, SNL 9214.
Last updated on Apr-05.

Generated on Thu Sep 18 12:40:58 2008 for ML by doxygen