#include <AnasaziOrthoManager.hpp>
Inheritance diagram for Anasazi::OrthoManager< ScalarType, MV >:
Public Member Functions  
Constructor/Destructor  
OrthoManager ()  
Default constructor.  
virtual  ~OrthoManager () 
Destructor.  
Orthogonalization methods  
virtual void  innerProd (const MV &X, const MV &Y, Teuchos::SerialDenseMatrix< int, ScalarType > &Z) const =0 
Provides the inner product defining the orthogonality concepts.  
virtual void  norm (const MV &X, std::vector< typename Teuchos::ScalarTraits< ScalarType >::magnitudeType > *normvec) const =0 
Provides the norm induced by innerProd().  
virtual void  project (MV &X, Teuchos::Array< Teuchos::RefCountPtr< Teuchos::SerialDenseMatrix< int, ScalarType > > > C, Teuchos::Array< Teuchos::RefCountPtr< const MV > > Q) const =0 
Given a list of (mutually and internally) orthonormal bases Q , this method takes a multivector X and projects it onto the space orthogonal to the individual Q[i] , optionally returning the coefficients of X for the individual Q[i] . All of this is done with respect to the inner product innerProd().  
virtual int  normalize (MV &X, Teuchos::RefCountPtr< Teuchos::SerialDenseMatrix< int, ScalarType > > B) const =0 
This method takes a multivector X and attempts to compute an orthonormal basis for , with respect to innerProd().  
virtual int  projectAndNormalize (MV &X, Teuchos::Array< Teuchos::RefCountPtr< Teuchos::SerialDenseMatrix< int, ScalarType > > > C, Teuchos::RefCountPtr< Teuchos::SerialDenseMatrix< int, ScalarType > > B, Teuchos::Array< Teuchos::RefCountPtr< const MV > > Q) const =0 
Given a set of bases Q[i] and a multivector X , this method computes an orthonormal basis for .  
Error methods  
virtual Teuchos::ScalarTraits< ScalarType >::magnitudeType  orthonormError (const MV &X) const =0 
This method computes the error in orthonormality of a multivector.  
virtual Teuchos::ScalarTraits< ScalarType >::magnitudeType  orthogError (const MV &X1, const MV &X2) const =0 
This method computes the error in orthogonality of two multivectors. 
This class defines concepts of orthogonality through the definition of an inner product. It also provides computational routines for orthogonalization.
A concrete implementation of this class is necessary. The user can create their own implementation if those supplied are not suitable for their needs.
Definition at line 74 of file AnasaziOrthoManager.hpp.

Default constructor.
Definition at line 79 of file AnasaziOrthoManager.hpp. 

Destructor.
Definition at line 82 of file AnasaziOrthoManager.hpp. 

Provides the inner product defining the orthogonality concepts. All concepts of orthogonality discussed in this class are with respect to this inner product.
Implemented in Anasazi::MatOrthoManager< ScalarType, MV, OP >. 

Provides the norm induced by innerProd().
Implemented in Anasazi::MatOrthoManager< ScalarType, MV, OP >. 

Given a list of (mutually and internally) orthonormal bases
After calling this routine,
Implemented in Anasazi::BasicOrthoManager< ScalarType, MV, OP >, Anasazi::MatOrthoManager< ScalarType, MV, OP >, and Anasazi::SVQBOrthoManager< ScalarType, MV, OP >. 

This method takes a multivector
This routine returns an integer
Implemented in Anasazi::BasicOrthoManager< ScalarType, MV, OP >, Anasazi::MatOrthoManager< ScalarType, MV, OP >, and Anasazi::SVQBOrthoManager< ScalarType, MV, OP >. 

Given a set of bases
This routine returns an integer
Implemented in Anasazi::BasicOrthoManager< ScalarType, MV, OP >, Anasazi::MatOrthoManager< ScalarType, MV, OP >, and Anasazi::SVQBOrthoManager< ScalarType, MV, OP >. 

This method computes the error in orthonormality of a multivector.
Implemented in Anasazi::BasicOrthoManager< ScalarType, MV, OP >, Anasazi::MatOrthoManager< ScalarType, MV, OP >, and Anasazi::SVQBOrthoManager< ScalarType, MV, OP >. 

This method computes the error in orthogonality of two multivectors.
Implemented in Anasazi::BasicOrthoManager< ScalarType, MV, OP >, Anasazi::MatOrthoManager< ScalarType, MV, OP >, and Anasazi::SVQBOrthoManager< ScalarType, MV, OP >. 