Thyra_MultiVectorStdOpsDecl.hpp File Reference

#include "Thyra_OperatorVectorTypes.hpp"
#include "RTOpPack_ROpNorm1.hpp"
#include "RTOpPack_ROpNorm2.hpp"
#include "RTOpPack_ROpNormInf.hpp"

Include dependency graph for Thyra_MultiVectorStdOpsDecl.hpp:

This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Namespaces

namespace  Thyra

Functions

template<class Scalar>
void norms (const MultiVectorBase< Scalar > &V, typename Teuchos::ScalarTraits< Scalar >::magnitudeType norms[])
 Column-wise multi-vector natural norm.
template<class Scalar, class NormOp>
void reductions (const MultiVectorBase< Scalar > &V, const NormOp &op, typename Teuchos::ScalarTraits< Scalar >::magnitudeType norms[])
 Column-wise multi-vector reductions.
template<class Scalar>
void norms_1 (const MultiVectorBase< Scalar > &V, typename Teuchos::ScalarTraits< Scalar >::magnitudeType norms[])
 Column-wise multi-vector one norm.
template<class Scalar>
void norms_2 (const MultiVectorBase< Scalar > &V, typename Teuchos::ScalarTraits< Scalar >::magnitudeType norms[])
 Column-wise multi-vector 2 (Euclidean) norm.
template<class Scalar>
void norms_inf (const MultiVectorBase< Scalar > &V, typename Teuchos::ScalarTraits< Scalar >::magnitudeType norms[])
 Column-wise multi-vector infinity norm.
template<class Scalar>
void dots (const MultiVectorBase< Scalar > &V1, const MultiVectorBase< Scalar > &V2, Scalar dots[])
 Multi-vector dot product.
template<class Scalar>
void sums (const MultiVectorBase< Scalar > &V, Scalar sums[])
 Multi-vector column sum.
template<class Scalar>
Teuchos::ScalarTraits< Scalar
>::magnitudeType 
norm_1 (const MultiVectorBase< Scalar > &V)
 Take the induced matrix one norm of a multi-vector.
template<class Scalar>
void scale (Scalar alpha, MultiVectorBase< Scalar > *V)
 V = alpha*V.
template<class Scalar>
void scaleUpdate (const VectorBase< Scalar > &a, const MultiVectorBase< Scalar > &U, MultiVectorBase< Scalar > *V)
 A*U + V -> V (where A is a diagonal matrix with diagonal a).
template<class Scalar>
void assign (MultiVectorBase< Scalar > *V, Scalar alpha)
 V = alpha.
template<class Scalar>
void assign (MultiVectorBase< Scalar > *V, const MultiVectorBase< Scalar > &U)
 V = U.
template<class Scalar>
void update (Scalar alpha, const MultiVectorBase< Scalar > &U, MultiVectorBase< Scalar > *V)
 alpha*U + V -> V
template<class Scalar>
void update (Scalar alpha[], Scalar beta, const MultiVectorBase< Scalar > &U, MultiVectorBase< Scalar > *V)
 alpha[j-1]*beta*U(j) + V(j) - > V(j), for j = 0 ... U.domain()->dim()-1
template<class Scalar>
void update (const MultiVectorBase< Scalar > &U, Scalar alpha[], Scalar beta, MultiVectorBase< Scalar > *V)
 U(j) + alpha[j-1]*beta*V(j) - > V(j), for j = 0 ... U.domain()->dim()-1.
template<class Scalar>
void linear_combination (const int m, const Scalar alpha[], const MultiVectorBase< Scalar > *X[], const Scalar &beta, MultiVectorBase< Scalar > *Y)
 Y.col(j)(i) = beta*Y.col(j)(i) + sum( alpha[k]*X[k].col(j)(i), k=0...m-1 ), for i = 0...Y->range()->dim()-1, j = 0...Y->domain()->dim()-1.
template<class Scalar>
void randomize (Scalar l, Scalar u, MultiVectorBase< Scalar > *V)
 Generate a random multi-vector with elements uniformly distributed elements.
template<class Scalar>
void V_VpV (MultiVectorBase< Scalar > *Z, const MultiVectorBase< Scalar > &X, const MultiVectorBase< Scalar > &Y)
 Z(i,j) = X(i,j) + Y(i,j), i = 0...Z->range()->dim()-1, j = 0...Z->domain()->dim()-1.
template<class Scalar>
void V_VmV (MultiVectorBase< Scalar > *Z, const MultiVectorBase< Scalar > &X, const MultiVectorBase< Scalar > &Y)
 Z(i,j) = X(i,j) - Y(i,j), i = 0...Z->range()->dim()-1, j = 0...Z->domain()->dim()-1.


Generated on Thu Sep 18 12:33:07 2008 for Thyra Package Browser (Single Doxygen Collection) by doxygen 1.3.9.1