
MOOCHO Reference Manual
Version of the Day

Generated by Doxygen 1.4.7

Wed May 12 21:58:32 2010



CONTENTS 1

Contents

1 MOOCHO: Multi-functional Object-Oriented arCHitecture for Opti-
mization 1

2 MOOCHO Module Index 30

3 MOOCHO Module Documentation 30

4 MOOCHO Example Documentation 34

1 MOOCHO: Multi-functional Object-Oriented
arCHitecture for Optimization

1.1 Outline

• Introduction

• MOOCHO Mathematical Overview Document

• Hyper-linked HTML version of this Document

• MOOCHO Quickstart

– Configuring, Building, and Installing MOOCHO

– Installed Optimization Examples

* Examples of General Serial NLPs with Explicit Jacobian Entries

* Examples of Simulation-Constrained NLPs using Thyra

– Setting up a driver program to call a MOOCHO solver

– Running MOOCHO to Solve Optimization Problems

* Linear solver input parameters for Stratimikos (Thyra models only)

* MOOCHO input options

* MOOCHO algorithm output
· Console output (output)
· Algorithm Configuration Output (MoochoAlgo.out)
· Algorithm Summary and Timing Output (MoochoSummary.out)
· Algorithm Journal Output (MoochoJournal.out)

* Algorithm Interruption

• Representing Nonlinear Programs for MOOCHO to Solve

– Representing General Serial NLPs with Explicit Jacobian Entries

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



1.2 Introduction 2

– Representing Simulation-Constrained Parallel NLPs through Thyra

• Other Trilinos Packages on which MOOCHO Directly Depends

• Configuration of the MOOCHO Package

• Individual MOOCHO Doxygen Collections

• Browse all of MOOCHO as a Single Doxygen Collection

• Links to Other Documentation Collections

1.2 Introduction

MOOCHO (Multifunctional Object-Oriented arCHitecture for Optimization) is a
Trilinos package written in C++ designed to solve large-scale, equality and inequality
nonlinearly constrained, non-convex optimization problems (i.e. nonlinear programs)
using reduced-space successive quadratic programming (SQP) methods. The most
general form of the optimization problem that can be solved is:

minimize f(x)
subject to c(x) = 0

xL ≤ x ≤ xU

where x ∈ <n the vector of optimization variables, f(x) ∈ <n → < is the nonlinear
scalar objective function, c(x) = 0 (where c(x) ∈ <n → <m) are the nonlinear
constraints, and xL and xU are the upper and lower bounds on the variables. The
current algorithms in MOOCHO are well suited to solving optimization problems
with massive numbers of unknown variables and equations but few so-called degrees
of optimization freedom (i.e. the degrees of freedom = the number of variables minus
the number of equality constraints = n−m). Various line-search based globalization
methods are available, including exact penalty functions and a form of the filter
method. Many of the algorithms in MOOCHO are provably locally and globally
convergent for a wide class of problems in theory but in practice the behavior and the
performance of the algorithms varies greatly from problem to problem.

MOOCHO was initially developed to solve general sparse optimization problems
where there is no clear distinction between state variables and optimization
parameters. For these types of problems a serial sparse direct solver must be used (i.e.
MA28) to find a square basis that is needed for the variable reduction decompositions
that are current supported.

More recently, MOOCHO has been interfaced through Thyra and the
Thyra::ModelEvaluator interface to address very large-scale, massively
parallel, simulation-constrained optimization problems that take the form:

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



1.2 Introduction 3

minimize f(xD, xI)
subject to c(xD, xI) = 0

xD,L ≤ xD ≤ xD,U

xI,L ≤ xI ≤ xI,U

where xD ∈ <m are the "dependent" state variables, xI ∈ <n−m are the
"independent" optimization parameters and c(xD, xI) = 0 are the discrete nonlinear
state simulation equations. Here the state Jacobian ∂c

∂xD
must be square and

nonsingular and the partitioning of x =
[

xT
D xT

I

]T
into state variables xD and

optimization variables xI must be known a priori and this partitioning can not change
during a solve. Warning, the Thyra::ModelEvaluator interface uses a
overlapping and inconsistent set set of names for the variables and the problem
functions than the names used by MOOCHO. All of the functionality needed for
MOOCHO to solve a simulation-constrained optimization problem can be specified
through sub-classing the Thyra::ModelEvaluator interface, and related Thyra
interfaces. Epetra-based applications can instead implement the
EpetraExt::ModelEvaluator interface and never need to work with Thyra
directly except in trivial and transparent ways.

For simulation-constrained optimization problems, MOOCHO can utilize the full
power of the massively parallel iterative linear solvers and preconditioners available in
Trilinos through Thyra through the Stratimikos package by just flipping a few
switches in a parameter list. These include all of the direct solves in Amesos, the
preconditioners in Ifpack and ML, and the iterative Krylov solvers in AztecOO and
Belos (Belos is not being released but is available in the development version of
Trilinos). For small to moderate numbers of optimization parameters, the only
bottleneck to parallel scalability is the linear solver used to solve linear systems
involving the state Jacobian ∂c

∂xD
. The reduced-space SQP algorithms in MOOCHO

itself achieve extremely good parallel scalability. The parallel scalability of the linear
solvers is controlled by the simulation application and the Trilinos linear solvers and
preconditioners themselves. Typically, the parallel scalability of the linear solve is
limited by the preconditioner as the problem is partitioned to more and more
processes.

MOOCHO also includes a minimally invasive mode for reduced-space SQP where the
simulator application only needs to compute the objective and constraint functions
f(xD, xI) ∈ <n → < and c(xD, xI) ∈ <n → <m and solve only forward linear
systems involving ∂c

∂xD
. All other derivatives can be approximated with directional

finite differences but any exact derivatives that can be computed by the application are
happily accepted and fully utilized by MOOCHO through the
Thyra::ModelEvaluator interface.

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen

file:../../../amesos/doc/html/index.html
file:../../../ifpack/doc/html/index.html
file:../../../ml/doc/html/index.html
file:../../../aztecoo/doc/html/index.html


1.3 MOOCHO Mathematical Overview Document 4

1.3 MOOCHO Mathematical Overview Document

A more detailed mathematical overview of nonlinear programming and the algorithms
that MOOCHO implements are described in the document A Mathematical and
High-Level Overview of MOOCHO. This document also defines the mapping of
mathematical notation to C++ identifiers used by MOOCHO. User’s should at least
browse this document in order to understand the basics of what MOOCHO is doing.

1.4 Hyper-linked HTML version of this Document

The doxygen-generated hyper-linked version of his document can be found at the
Trilinos website under the link to MOOCHO.

1.5 MOOCHO Quickstart

In order to get started using MOOCHO to solve your NLPs you must first build
MOOCHO as part of Trilinos and install it. When MOOCHO is installed with
Trilinos, several complete examples are also installed that show how to define NLPs,
compile and link against the installed headers and libraries, and how to run the
MOOCHO solvers.

Below, we briefly describe Configuring, Building, and Installing MOOCHO, Running
MOOCHO to Solve Optimization Problems, and accessing the Installed Optimization
Examples.

Quickstart Outline

• Configuring, Building, and Installing MOOCHO

• Installed Optimization Examples

– Examples of General Serial NLPs with Explicit Jacobian Entries
– Examples of Simulation-Constrained NLPs using Thyra

• Setting up a driver program to call a MOOCHO solver

• Running MOOCHO to Solve Optimization Problems

– Linear solver input parameters for Stratimikos (Thyra models only)
– MOOCHO input options
– MOOCHO algorithm output

* Console output (output)

* Algorithm Configuration Output (MoochoAlgo.out)

* Algorithm Summary and Timing Output (MoochoSummary.out)

* Algorithm Journal Output (MoochoJournal.out)
– Algorithm Interruption

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



1.5 MOOCHO Quickstart 5

1.5.1 Configuring, Building, and Installing MOOCHO

Complete details on configuring, building, and installing of Trilinos are described in
the Trilinos Users Guide. However, here we give a quick overview which is specific to
MOOCHO.

Here we describe the configuration, build, and installation process for a directory
structure that looks like:

$TRILINOS_BASE_DIR
|
|-- Trilinos
|
-- BUILDS

|
-- DEBUG

where $TRILINOS_BASE_DIR is some base directory such as
TRILINOS_BASE_DIR=$HOME/Trilinos.base. However, in general, the
build directory (show as $TRILINOS_BASE_DIR/BUILDS/DEBUG above) can be
any directory you want but should not be the same as the base directory for Trilinos.
In the most general case, we will assume that $TRILINOS_BUILD_DIR is the base
build directory; in this section, we assume that
TRILINOS_BUILD_DIR=$TRILINOS_BASE_DIR/BUILDS/DEBUG. The
Trilinos Users Guide might still recommend that you create the build directory from
within the main Trilinos source directory tree (i.e. Trilinos/DEBUG) but we
recommend against this practice and the build system supports the more general case
described here just as well.

Here are the steps needed to configure, build, and install MOOCHO along with the
rest of Trilinos:

1. Obtain a source tree for Trilinos
Once you have created the base directory $TRILINOS_BASE_DIR you need
to get a copy of the Trilinos source.

If you have CVS access you can obtain the version of the day through the main
development trunk or can check out a specific tagged release. For example, to
obtain the version of the day you would perform:

cd $TRILINOS_BASE_DIR
cvs -d :ext:userid@software.sandia.gov:/space/CVS co Trilinos

where userid is your user ID on the CVS server. For further details on
working with CVS access to Trilinos, see the Trilinos Developers Guide.

If you do not have CVS access you can obtain a tar ball for a release of Trilinos
from the Trilinos Releases Download Page. Once you have the tar ball, you can
expand it into the directory $TRILINOS_BASE_DIR as follows:

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



1.5 MOOCHO Quickstart 6

cd $TRILINOS_BASE_DIR
tar -xzvf ~/trilnos-7.0.x.tar.gz

where 7.0.x is some minor release number of Trilinos; hopefully the most
current version. Note that when building form a tarball, the base directly is
likely to be called something like trilinos-7.0.x instead of just the base
directory name Trilinos; in this document the base directory name
Trilinos as is assumed.

2. Create the build base directory
After you have a copy of the Trilinos source tree in
$TRILINOS_BASE_DIR/Trilinos, you need to create the base build
directory. Here, we assume that you will create the build directory
$TRILINOS_BASE_DIR/BUILDS/DEBUG as follows:

cd $TRILINOS_BASE_DIR
mkdir BUILDS
mkdir BUILDS/DEBUG

3. Create a configuration script
Once you have the Trilinos source code and have created a base build directory,
you need to create a configuration script for Trilinos. By far the hardest part of
building and installing Trilinos is figuring out how to write the configuration
script that will work for the system that you are on and includes the packages
and extra options that you need. The best place to find example configure
scripts that at least have a chance of being correct on specific systems is to look
at Trilinos test harness scripts in the directory:

Trilinos/commonTools/test/harness/invoke-configure

Older scripts that have worked on a wider variety of systems in the past for
different sets of packages can be found in the directory:

Trilinos/sampleScripts

Warning! The scripts in Trilinos/sampleScripts are likely to be
currently broken for even the same systems for which they where developed.
These scripts really only provide ideas for different combinations of options to
try to get a configure script to work on your system.

Below is perhaps one of the simplest configure scripts that might get Trilinos to
build on a GCC/Linux based platform (without MPI support) with MOOCHO
support correctly and with enough capability to be useful for initial
development purposes:

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



1.5 MOOCHO Quickstart 7

$TRILINOS_BASE_DIR/Trilinos/configure \
--prefix=$TRILINOS_INSTALL_DIR \
--with-gnumake \
--enable-export-makefiles \
--with-cflags="-g -O0 -ansi -Wall" \
--with-cxxflags="-g -O0 -ansi -Wall -pedantic" \
--enable-teuchos-extended --enable-teuchos-debug --enable-teuchos-abc \
--enable-thyra \
--enable-epetraext \
--enable-stratimikos \
--enable-moocho

A word of caution is in order about the above simple configure script; The
above script assumes that certain packages will be turned on by default (such as
Epetra, Amesos, AztecOO, Ifpack, and ML) and that other packages will be
turned on automatically by the presence of the given enables. While this should
work correctly for many different possible combinations of enables and
disables, there are many configurations that will not work just due to faults in
logic and inadequate testing of all of the possible options. When in doubt, be
explicit about what you enable and be weary about selectively disabling certain
packages and subpackages. The safest strategy is to copy the enables and
disables that are used in one of the invoke configure scripts from the test
harness and then remove the enables for the optional third-partly libraries.

Below is an example of a more complicated configure script that might be used
to configure Trilinos with MOOCHO support and a Linux system with gcc with
more capabilities based on some third-party libraries (but the script might not
actually work on any actual computer on Earth):

$TRILINOS_BASE_DIR/Trilinos/configure \
--prefix=$TRILINOS_INSTALL_DIR \
--with-install="/usr/bin/install -p" \
--with-gnumake \
--enable-export-makefiles \
--with-cflags="-g -O0 -ansi -Wall" \
--with-cxxflags="-g -O0 -ansi -Wall -ftrapv -pedantic -Wconversion" \
--enable-mpi --with-mpi-compilers \
--with-incdirs="-I${HOME}/include" \
--with-ldflags="-L${HOME}/lib/LINUX_MPI" \
--with-libs="-ldscpack -lumfpack -lamd -lparmetis-3.1 -lmetis-4.0 -lskit" \
--with-blas=-lblas \
--with-lapack=-lapack \
--with-flibs="-lg2c" \
--disable-default-packages \
--enable-teuchos --enable-teuchos-extended --disable-teuchos-complex \

--enable-teuchos-abc --enable-teuchos-debug \
--enable-thyra \
--enable-epetra \
--enable-triutils \
--enable-epetraext \
--enable-amesos --enable-amesos-umfpack --enable-amesos-dscpack \
--enable-aztecoo \
--enable-ifpack --enable-ifpack-metis --enable-ifpack-sparskit \

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



1.5 MOOCHO Quickstart 8

--enable-ml --with-ml_metis --with-ml_parmetis3x \
--enable-stratimikos \
--enable-moocho

The above script is almost completely platform dependent in most cases, except
for everything below -disable-default-packages for enable options
for individual packages. A few points about the above configure script are
worth mentioning. First, some of the package enable options such as
-enable-epetra should be unnecessary once other options such as
-enable-epetraext are included but to be safe it is a good idea to be
explicit about what packages to build in case the default built-in top-level
configure logic does not handle the dependencies correctly. Second, it is a good
idea to include the options -enable-teuchos-debug and
-enable-teuchos-abc when you first start working with Trilinos to help
catch coding errors on your part (and perhaps on the part of Trilinos
developers). Third, the above script shows enabled support for several
third-party libraries such as UMFPACK, DSCPACK, SparseKit, and Metis. You
are responsible for installing these third-party libraries yourself if you want the
extra capabilities that they enable. Otherwise, to get started, a simpler script,
such as shown above, can be used to get started with Trilinos/MOOCHO.

As a final step, you can copy the contents of the configure invocation command
(examples shown above) into a script called do-configure and make the
script executable which is assumed below.

4. Configure, build, and install Trilinos
Once you have a configure script, you can try to configure and build Trilinos as
follows:

cd $TRILINOS_BUILD_DIR
./do-configure
make
make install

If a problem does occur, it usually occurs during configuration. Often trial and
error is required to get the configuration to complete successfully.

Once the Trilinos build completes (which can take hours on a slower machine if
a lot of packages are enabled) you should test Trilinos using something like:

make runtest-mpi TRILINOS_MPI_GO="\"mpirun -np \""

If MPI is not enabled, you run run the serial test suite as:

make runtest-serial

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



1.5 MOOCHO Quickstart 9

Once you feel confident that the build has completed correctly, you can install
MOOCHO along with the test of Trilinos as follows:

make install

If everything goes smoothly, then Trilinos will be installed with the following
directory structure:

$TRILINOS_INSTALL_DIR
|
|-- examples
|
|-- include
|
|-- libs
|
-- tools

Once the install competes, you can move on to building and running the
installed MOOCHO examples as described in the next section.

1.5.2 Installed Optimization Examples

When the configure option -enable-export-makefiles is included, a set of
examples are installed in the directory specified by
-prefix=$TRILINOS_INSTALL_DIR and the directory structure will look
something like:

$TRILINOS_INSTALL_DIR
|
|-- examples
| |
| -- moocho
| |
| |-- NLPWBCounterExample
| |
| |-- ExampleNLPBanded
| |
| |-- thyra
| |
| |-- NLPThyraEpetraModelEval4DOpt
| |
| -- NLPThyraEpetraAdvDiffReactOpt
|
-- tools

|
-- moocho

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



1.5 MOOCHO Quickstart 10

Note that the directory
$TRILINOS_INSTALL_DIR/examples/moocho/thyra will not be installed
if -enable-export-makefiles is not included (or is disabled) or if
-enable-thyra is missing or -disable-moocho-thyra is specified at
configure time. Also, none of the examples will be installed if the examples are
disabled using -disable-examples.

Each installed example contains a simple makefile that is ready to build each of the
examples and to demonstrate several important features of MOOCHO. Each makefile
shows how to compile and link against the installed header files and libraries. These
makefiles use the Trilinos export makefile system to make it easy to get all of the
compiler and linker options and get the right libraries in the build process. The user is
encouraged to copy these examples to their own directories and modify them to solve
their NLPs.

Specific examples are explained below but we first go through the common features of
these examples here for one of the Thyra::ModelEvaluator examples.

One common feature of all of the installed examples is the makefile that is generated
by the install process. For the NLPWBCounterExample example (that is described
in the section Examples of General Serial NLPs with Explicit Jacobian Entries) the
makefile looks like:

By using the macros starting with MOOCHO_ one is guaranteed that the same
compiler/linker with the same compiler/linker options that were used to build Trilinos
are used to build the client’s codes. Of particular importance are the macros
MOOCHO_CXX, MOOCHO_DEFS, MOOCHO_CPPFLAGS, and MOOCHO_CXXLD since
these ensure that the same C++ compiler and the same -D C/C++ preprocessor
definitions are used. These are critical to compiling compatible code in many cases.
The macro MOOCHO_LIBS contain all of the libraries needed to link executables and
they include all of the libraries in their lower-level dependent Trilinos packages. For
example, you don’t explicitly see the libraries for say Teuchos, but you can be sure
that they are there.

This makefile gets created with the following lines commented in or out depending on
if -with-gnumake was specified or not when Trilinos was configured:

In the above example, support for GNU Make is enabled which results in scripts being
called to clean up the list of libraries which may have duplicate entries otherwise.

A few different installed NLP examples are described below.

1.5.2.1 Examples of General Serial NLPs with Explicit Jacobian Entries

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



1.5 MOOCHO Quickstart 11

• Waechter and Biegler Counterexample

– NLPInterfacePack::NLPWBCounterExample: Subclass for a
small NLP with n=3 variables and m=2 equality constraints that
implements the Waechter and Biegler counterexample [???] which shows
global convergence failure from many starting points for many NLP
solvers (including many current MOOCHO algorithms).

– NLPWBCounterExampleMain.cpp: Main driver program for solving
the NLP.

– Installed in $TRILINOS_INSTALL_-
DIR/example/moocho/NLPWBCounterExample

• Scalable Banded Equality and/or Inequality Constrained Example

– NLPInterfacePack::ExampleNLPBanded: Scalable NLP with
nD dependent variables, nI independent variables, mI general inequality
constraints, and with a Jacobian with bandwidth of bw. This NLP can also
be configured to represent a square set of equations (i.e. nI=0) and an
unconstrained optimization problem (i.e. nD=0).

– ExampleNLPBandedMain.cpp: Main driver program for solving the
NLP.

– Installed in $TRILINOS_INSTALL_-
DIR/example/moocho/ExampleNLPBanded

1.5.2.2 Examples of Simulation-Constrained NLPs using Thyra The below
examples show subclasses of EpetraExt::ModelEvaluator that are used
along with Thyra::EpetraModelEvaluator and the stratimikos solvers
accessed through Stratimikos::DefaultLinearSolverBuilder.

• Simple 4 x 2 serial optimization problem demonstrating the
EpetraExt::ModelEvaluator interface

– EpetraModelEval4DOpt: Subclass for a small serial model with n=4
variables and m=2 equality constraints. The purpose of this model is to
show the most basic parts of a concrete implementation. This example is
only serial however and does not address parallelization issues.

– NLPThyraEpetraModelEval4DOptMain.cpp: Main driver
program for solving the NLP.

– Installed in $TRILINOS_INSTALL_-
DIR/example/moocho/thyra/NLPThyraEpetraModel-
Eval4DOpt

• Scalable Parallel 2D diffusion/reaction boundary inversion problem

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen

file:./NLPWBCounterExampleMain_8cpp-example.html
file:./ExampleNLPBandedMain_8cpp-example.html
file:./NLPThyraEpetraModelEval4DOptMain_8cpp-example.html


1.5 MOOCHO Quickstart 12

– GLpApp::AdvDiffReactOptModel: Implements an inversion
problem based on a finite-element discretization of a 2D reaction/diffusion
state equation. This example shows a more advanced model what includes
parallelization in the state space.

– NLPThyraEpetraAdvDiffReactOptMain.cpp: Main driver
program for solving the NLP.

– Installed in $TRILINOS_INSTALL_-
DIR/example/moocho/thyra/NLPThyraEpetraAdvDiff-
ReactOpt

Note: The above examples will only be installed if the configure options
-enable-moocho, -enable-thyra, -enable-stratimikos, and
-enable-epetraext-thyra are all included.

1.5.3 Setting up a driver program to call a MOOCHO solver

Once an NLP is defined, a driver program must be constructed to setup a MOOCHO
solver and configure it given options set by the user. When building a driver program
to solve an NLP based on an
NLPInterfacePack::NLPSerialPreprocessExplJac subclass object,
one should directly use the "Facade" solver class MoochoPack::MoochoSolver
(see NLPWBCounterExampleMain.cpp). However, when using an NLP based
on a Thyra::ModelEvaluator object, then the more specialized "Facade" solver
class MoochoPack::MoochoThyraSolver should be used (see
NLPThyraEpetraModelEval4DOptMain.cpp). The class
MoochoPack::MoochoThyraSolver just uses
MoochoPack::MoochoSolver internally for the main solve but provides a great
deal of extra functionality to set initial guesses (also from an input file) and wrap the
model evaluator object with various "Decorator" skins and to capture and return the
final solution.

1.5.4 Running MOOCHO to Solve Optimization Problems

Once an NLP is defined and a driver program is in place (see the above driver
programs), then MOOCHO can be run to try to solve the optimization problem. Most
of the options that affect MOOCHO (and the Trilinos linear solvers accessed through
Stratimikos) can be read in from various input files or specified entirely on the
command line. The diver programs shown above show examples of how to setup a
Techos::CommandLineProcessor object to accept a number of different command-line
arguments that can be used to read in MOOCHO and Trilinos linear solver options.
For example, consider the simple driver program
NLPThyraEpetraModelEval4DOptMain.cpp. This example shows the use of
both MOOCHO options and Stratimikos linear solver options.

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen

file:./NLPThyraEpetraAdvDiffReactOptMain_8cpp-example.html
file:./NLPThyraEpetraModelEval4DOptMain_8cpp-example.html
file:./NLPThyraEpetraModelEval4DOptMain_8cpp-example.html


1.5 MOOCHO Quickstart 13

Here are the command-line arguments that the program
NLPThyraEpetraModelEval4DOptMain.cpp accepts:

Below, the various types of input and output are described. Input parameters/options
are separated into linear solver parameters for Stratimikos and algorithm options for
MOOCHO.

1.5.4.1 Linear solver input parameters for Stratimikos (Thyra models only)
When using a ThyraModelEvaluator-based NLP, the linear solver options for
inverting the basis of the equality constraints are read in through a
Teuchos::ParameterList object which is accepted through the Stratimikos
class Stratimikos::DefaultLinearSolverBuilder. When a
MoochoPack::MoochoThyraSolver object is used to build a driver program, it
can add options to the Teuchos::CommandLineProcessor object through the
function Stratimikos::DefaultLinearSolverBuilder::setupCLP()
(see NLPThyraEpetraModelEval4DOptMain.cpp). This adds the
command-line arguments -linear-solver-params-file and
-extra-linear-solver-params which are used to read in parameters for the
Stratimikos-wrapped linear solvers in XML format.

The linear solver parameters file is specified in XML and the list of all of the valid
options can be found in the documentation for the class
Stratimikos::DefaultLinearSolverBuilder itself.

An example of a linear solver options input file that specifies the use of the Amesos
solver Amesos_Klu is shown below:

The XML input for the linear solver parameters can be read from a file using the
-linear-solver-params-file argument and/or from the command-line itself
using the -extra-linear-solver-params argument. Note that any
parameters specified by the -extra-linear-solver-params argument will
append and overwrite those read in from the file specified by the
-linear-solver-params-file argument. If the argument
-linear-solver-params-file is missing, then a set of internal options is
looked for instead.

1.5.4.2 MOOCHO input options The input for the MOOCHO options currently
uses a completely different system than for linear solver parameters used by
Stratimikos. The class OptionsFromStreamPack::OptionsFromStream is
used to read in MOOCHO options from a text string (or a file) and is used to represent
an options data base that is used by MOOCHO. The function

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



1.5 MOOCHO Quickstart 14

MoochoPack::MoochoSolver::setup_commandline_processor()
can be used to set the command-line arguments -moocho-options-file and
-moocho-extra-options to read in MOOCHO options. The format of the
options file and a listing, with documentation, of all of the valid MOOCHO options is
shown here.

An example of an options file showing some of the common options that a user might
want to set is shown below:

begin_options

options_group NLPSolverClientInterface {
max_iter = 20;
max_run_time = 2.0; *** In minutes
opt_tol = 1e-2;
feas_tol = 1e-7;

* journal_output_level = PRINT_NOTHING; * No output to journal from algorithm

* journal_output_level = PRINT_BASIC_ALGORITHM_INFO; * O(1) information usually
journal_output_level = PRINT_ALGORITHM_STEPS; * O(iter) output to journal [default]

* journal_output_level = PRINT_ACTIVE_SET; * O(iter*nact) output to journal

* journal_output_level = PRINT_VECTORS; * O(iter*n) output to journal (lots!)

* journal_output_level = PRINT_ITERATION_QUANTITIES; * O(iter*n*m) output to journal (big lots!)

* null_space_journal_output_level = DEFAULT; * Set to journal_output_level [default]

* null_space_journal_output_level = PRINT_ACTIVE_SET; * O(iter*nact) output to journal

* null_space_journal_output_level = PRINT_VECTORS; * O(iter*(n-m)) output to journal (lots!)
null_space_journal_output_level = PRINT_ITERATION_QUANTITIES; * O(iter*(n-m)^2) output to journal (big lots!)
journal_print_digits = 10;
calc_conditioning = true;
calc_matrix_norms = true; *** (costly?)
calc_matrix_info_null_space_only = true; *** (costly?)

}

options_group DecompositionSystemStateStepBuilderStd {

* null_space_matrix = AUTO; *** Let the solver decide [default]
null_space_matrix = EXPLICIT; *** Compute and store D = -inv(C)*N explicitly

* null_space_matrix = IMPLICIT; *** Perform operations implicitly with C, N (requires adjoints)

* range_space_matrix = AUTO; *** Let the algorithm decide dynamically [default]

* range_space_matrix = COORDINATE; *** Y = [ I; 0 ] (Cheaper computationally)
range_space_matrix = ORTHOGONAL; *** Y = [ I; -N’*inv(C’) ] (more stable)

}

options_group NLPAlgoConfigMamaJama {

* quasi_newton = AUTO; *** Let solver decide dynamically [default]
quasi_newton = BFGS; *** Dense BFGS

* quasi_newton = LBFGS; *** Limited memory BFGS

* line_search_method = AUTO; *** Let the solver decide dynamically [default]

* line_search_method = NONE; *** Take full steps at every iteration

* line_search_method = DIRECT; *** Use standard Armijo backtracking
line_search_method = FILTER; *** [default] Use the Filter line search method

}

end_options

For more detailed documentation on what each of these options mean and more, see
the full listing of the options here.

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



1.5 MOOCHO Quickstart 15

The command-line argument -moocho-options-file is used to read in an set of
MOOCHO options from a file using the format shown above. If the argument
-moocho-options-file is missing, then a file with the name "Moocho.opt" is
looked for in the current directory. If this file is not found, then a warning is printed
and a default set of options are used. The user is warned to check that their opinions
file was actually read and that it will be ignored if it is not found!

The argument -moocho-extra-options can be used to specify MOOCHO
options directly on the command line in a slightly more terse format than the format
of a MOOCHO options file. For example, the command-line equivalent to a subset of
the options set in the above example MOOCHO options file is:

--moocho-extra-options="\
NLPSolverClientInterface{max_iter=20,max_run_time=2.0,opt_tol=1e-2,feas_tol=1e-7\

,journal_output_level= PRINT_ALGORITHM_STEPS\
,null_space_journal_output_level=PRINT_ITERATION_QUANTITIES\
,journal_print_digits=10,calc_conditioning=true,calc_matrix_norms=true\
,calc_matrix_info_null_space_only=true}\

:DecompositionSystemStateStepBuilderStd{\
null_space_matrix=EXPLICIT,range_space_matrix=ORTHOGONAL}\

:NLPAlgoConfigMamaJama{quasi_newton=BFGS,line_search_method=FILTER}"

The options specified in the -moocho-extra-options argument will append and
override those read in from a MOOCHO input file specified by the
-moocho-options-file argument.

1.5.4.3 MOOCHO algorithm output When a MOOCHO optimization algorithm
is run, by default, several different types of output are generated. By default, output is
sent to the console (i.e. standard out) and to three different files:
MoochoSummary.out, MoochoAlgo.out, and MoochoJournal.out. These
four output streams provide different types of information about the MOOCHO
algorithm.

To demonstrate the output files, here we show example output generated by the
example program NLPThyraEpetraModelEval4DOptMain.cpp. This
example is used since it is fairly simple but can be used to generate more interesting
output files. The output from running MOOCHO on a
Thyra::ModelEvaluator-based NLP looks very similar to running on one
based on the more general NLP interface.

The example program NLPThyraEpetraModelEval4DOpt.exe when run with
the command-line arguments:

with the above sample Moocho.opt options file, creates the output:

• Console output (output)

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



1.5 MOOCHO Quickstart 16

• Algorithm Configuration Output (MoochoAlgo.out)

• Algorithm Summary and Timing Output (MoochoSummary.out)

• Algorithm Journal Output (MoochoJournal.out)

Each of these different types of output are described below and the major types of
output that are included in each output stream are discussed. The purpose of this
treatment is to familiarize the user with the contents of these outputs and to give hints
of where to look for a certain types of information.

Before going into the details of each individual type of output, first a few general
comments are in order. First, at the top of every output file (except for the console
output) a header is included that briefly describes the general purpose of the output
file. This header is followed by an echo of the options that where read into the
OptionsFromStreamPack::OptionsFromSteam object. These options
include those set in the input file Moocho.opt or by some other means (e.g.∼in the
executable or on the command line) as described above. The purpose of echoing the
options in each file is to help record what setting were used to produce the output in
the file. Of course the output is also influenced by other factors (e.g. other
command-line options, properties of the specific NLP being solved etc.) and therefore
these options do not determine the complete behavior of the software.

Console Output (output)

Console outputting is generated by a default
IterationPack::AlgorithmTracker subclass subclass object of type
MoochoPack::MoochoTrackerConsoleStd. This output is designed to
approximately fit in an 80 character wide console. Here is the output that is generated
for this example program:

Above, one of the the first things printed is the size of the NLP where n is the total
number of variables, m is the total number of equality constraints and nz is the
number of nonzeros in the Jacobian ∇c (Gc). Note that for a simulation-constrained
optimization problem that nz will not give any useful information since this is not
available through the Thyra interfaces.

Following the global dimensions of the problem, a table containing summary
information for each rSQP iteration is printed in real time. Each column in this table
has the following meaning:

• k : The SQP iteration counter. This count starts from zero so the total number
of SQP iterations is one plus the final k.

• f : The value of the objective function f(x) (possibly scaled) at current
estimate of the solution xk

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



1.5 MOOCHO Quickstart 17

• ||c||s : The scaled residual of the norm of the equality constraints c(x) at
current estimate of the solution xk. The scaling is determined by the
convergence check (see the step "CheckConvergence" in MoochoAlgo.out and
MoochoJournal.out) and this value is actually equal to the iteration quantity
feas_kkt_err (see the file MoochoAlgo.out). This is the error that is
compared to the tolerance feas_tol in the convergence check (which is equal
to the option NLPSolverClientInterface{feas_tol}). The unscaled
constraint norm can be viewed in the more detailed iteration summary table
printed in the file MoochoSummary.out.

• ||rGL||s : The scaled norm of the reduced gradient of the Lagrangian ZT∇xL
at current estimate of the solution xk. The scaling is determined by the
convergence check (see the step "CheckConvergence" in MoochoAlgo.out and
MoochoJournal.out) and this value is actually equal to the iteration quantity
opt_kkt_err (see the file MoochoAlgo.out). This is the error that is
compared to the tolerance opt_tol in the convergence check (which is equal
to the option NLPSolverClientInterface{opt_tol}). The unscaled
norm can be viewed in the more detailed summary table printed in the file
MoochoSummary.out.

• QN : This field indicates whether a quasi-Newton update of the reduced Hessian
was performed or not. The following are the possible values:

– IN : Reinitialized (usually to identity I)

– DU : A dampened update was performed

– UP : An undamped update was performed

– SK : The update was skipped on purpose

– IS : The update was skipped because it was indefinite

• act : Number of active constraints in the QP subproblem. This field only has
meaning for an active-set algorithms. For interior-point algorithms, this will
just equal the number of bounded variables and does not provide any useful
information. For problems without any bounds or inequality constraints, this
column is not shown.

• ||Ypy||2 : The ||.||2 norm of the quasi-normal contribution (Y py)k. This norm
gives a sense of how large the feasibility steps are.

• ||Zpz||2 : The ||.||2 norm of the tangential contribution (Zpz)k. This norm
gives a sense of how large the optimality steps are.

• ||d||inf : The ||.||∞ norm of the total step dk = (Y py)k + (Zpz)k. This norm
gives a sense of how large the full SQP steps are in x.

• alpha : The step length taken along xk+1 = xk + αdk. A step length of α = 0
represents a major event in the algorithm such as a line search failure followed
by the selection of a new basis or a QP failure followed by a reinitialization of

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



1.5 MOOCHO Quickstart 18

the reduced Hessian. A small number for α indicates that many backtracking
line search iterations where required and is an indication that the computed
search direction dk is of poor quality. A value of alpha=1.0 usually indicates
that the algorithm is taking full spaces and may be performing well.

• time(s) : The total wall-clock time consumed by the algorithm to that point.
By differencing the times between iterations, one can compute the amount of
time taken for each iteration. See the more detailed timing output in the file
MoochoSummary.out.

After the iteration summary is printed, the total wall-clock time is given in Total
time. This is the wall-clock time that is consumed from the time that the
MoochoPack::MoochoTrackerConsoleStd object is first initialized up until
the time that the final state of the algorithm is reported. Therefore, this wall-clock
time may contain more than just the execution time of the algorithm proper. For more
detailed built-in timings, see the table at the end of the file MoochoSummary.out.

Following the total runtime, the total number of function and gradient evaluations is
given for the objective and the constraints. Note that if finite difference testing is
turned on, then many extra evaluations will be performed and this will inflate these
counters.

Algorithm Configuration Output (MoochoAlgo.out)

In addition to output the console, MOOCHO will also write a file called
MoochoAlgo.out by default that gives information about what MOOCHO algorithm is
configured and what logic went into its configuration. This file is too long to be shown
here. This file provides the road map for determining what iteration quantities are
being used by the algorithm, what the algorithmic steps are, and what the logic of the
algorithm is using a shorthand, Matlab-like, notation. This file is the first place to go
when trying to figure out what a MOOCHO algorithm is doing and is critical to
understand the MoochoJournal.out file.

Many of the options specified in the options file are shown in the printed algorithm.
The user can therefore study the algorithm printout to see what effect some of the
options have. For example, the option
NLPSolverClientInterface{opt_tol} is used in the Step
"CheckConvergence" under the name opt_tol in the files MoochoAlgo.out and
MoochoJournal.out. Some of the options only determine the algorithm configuration,
which affects what steps are included, how steps are set up and in what order they are
included. These option names are not specifically shown in the algorithm printout
per-say. For example, the option
NLPAlgo_ConfigMamaJama{max_dof_quasi_newton_dense}
determines when the algorithm configuration will switch from using dense BFGS to
using limited-memory BFGS but this identifier name
max_dof_quasi_newton_dense is not shown anywhere in the listing. However,
the configuration object can print out a short log (to the MoochoAlgo.out file) to
show the user how these options impact the configuration of the algorithm.

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



1.5 MOOCHO Quickstart 19

Algorithm Summary and Timing Output (MoochoSummary.out)

The file MoochoSummary.out contains a more detailed summary table than what is
sent to the console, a table of the timings for each algorithm step for each iteration,
and some limited profiling-type output (produced by Teuchos::TimeMonitor).

Algorithm Journal Output (MoochoJournal.out)

The file MoochoJournal.out contains more detailed, iteration by iteration, step by step
information on what the algorithm is doing. The steps shown in this output are the
same that are shown in the pseudo algorithm description shown in the file
MoochoAlgo.out described above. The amount of output produced in this file is
mainly controlled by the option
NLPSolverClientInterface{journal_output_level} and the value of
PRINT_ALGORITHM_STEPS is usually the most appropriated in most cases and
prints only O(k) output, where k is the SQP iteration counter. The value of
ITERATION_QUANTITIES will produce obscene amounts of debugging output and
will dump nearly every vector and every matrix used in the algorithm. There are many
options in the Moocho.opt options file that control exactly what type of output is
generated to meet different needs. Note that the option
NLPSolverClientInterface{null_space_journal_output_level}
will override NLPSolverClientInterface{journal_output_level} for
quantities that lie in the null space. This is helpful for seeing the progress of the
algorithm where there are few degrees of optimization freedom.

1.5.4.4 Algorithm Interruption All MOOCHO algorithms can be interrupted at
any time while the algorithm is running and result in a graceful termination, even for
parallel runs with MPI. When running in interactive mode (i.e. the user has access to
standard in and standard out at the console) then typing Ctrl-C will cause the
algorithm to pause at the end of the current algorithm step and menu like the
following will appear:

IterationPack::Algorithm::interrupt(): Received signal SIGINT. Wait for
the end of the current step and respond to an interactive query, kill
the process by sending another signal (i.e. SIGKILL).

IterationPack::Algorithm: Received signal SIGINT.
Just completed current step curr_step_name = "EvalNewPoint", curr_step_poss = 1
of steps [1...9].
Do you want to:

(a) Abort the program immediately?
(c) Continue with the algorithm?
(s) Gracefully terminate the algorithm at the end of this step?
(i) Gracefully terminate the algorithm at the end of this iteration?

Answer a, c, s or i ?

To terminate the algorithm gracefully at the end of the current step, type ’s’, which
brings up the next question:

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



1.5 MOOCHO Quickstart 20

Terminate the algorithm with true (t) or false (f) ?

Answering false (’f’), which is interpreted as failure, results in the algorithm exiting
immediately with the partial solution being returned to the NLP object and everything
being cleaned up correctly on exit. The full output from this type of interrupt looks
something like:

********************************
*** Start of rSQP Iterations ***
n = 1331, m = 1111, nz = 1478741

k f ||c||s ||rGL||s QN ||Ypy||2 ||Zpz||2 ||d||inf alpha time(s)
---- --------- --------- --------- -- -------- -------- -------- -------- ---------

0 2.1 0.11 0.095 IN 1e+001 7 5 1 1.152
1 4.3 0.00025 0.27 UP 0.1 2 0.1 1 2.294
2 4.1 8.5e-006 0.25 DU 0.007 3 0.3 1 3.405

IterationPack::Algorithm::interrupt(): Received signal SIGINT. Wait for the end of
the current step and respond to an interactive query, kill the process by sending
another signal (i.e. SIGKILL).

IterationPack::Algorithm: Received signal SIGINT.
Just completed current step curr_step_name = "EvalNewPoint", curr_step_poss = 1 of
steps [1...9].
Do you want to:

(a) Abort the program immediately?
(c) Continue with the algorithm?
(s) Gracefully terminate the algorithm at the end of this step?
(i) Gracefully terminate the algorithm at the end of this iteration?

Answer a, c, s or i ? s

Terminate the algorithm with true (t) or false (f) ? f

---- --------- --------- --------- --
3 3.4 - - - - - - - 7.762

Total time = 7.762 sec

Oops! Not the solution. The user terminated the algorithm and said to return non-optimal!

Number of function evaluations:
-------------------------------
f(x) : 10
c(x) : 10
Gf(x) : 5
Gc(x) : 5
Some algorithmic error occurred!

A MOOCHO algorithm can also be interrupted without access to standard in or
standard out (i.e. when running in batch mode) by setting up an interrupt file. When
the interrupt file is found, the algorithm is terminated. MOOCHO must be told to look
for an interrupt file by setting the option IterationPack_-
Algorithm{interrupt_file_name="interrupt.in"} where any file

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



1.5 MOOCHO Quickstart 21

name can be substituted for the name "interrupt.in". At the end of each
algorithm step, MOOCHO will look for the file "interrupt.in", usually in its
current working directory (or an absolute path can be specified as well). If it finds the
file it will read it for termination instructions. For example, a interruption file that
contains

i f

will result in the algorithm terminating at the end of the current iteration with the
condition ’false’, which means failure. The output generated from this type of
interrupt looks something like:

********************************
*** Start of rSQP Iterations ***
n = 1331, m = 1111, nz = 1478741

k f ||c||s ||rGL||s QN ||Ypy||2 ||Zpz||2 ||d||inf alpha time(s)
---- --------- --------- --------- -- -------- -------- -------- -------- ---------

0 2.1 0.11 0.095 IN 1e+001 7 5 1 1.161
1 4.3 0.00025 0.27 UP 0.1 2 0.1 1 2.293
2 4.1 8.5e-006 0.25 DU 0.007 3 0.3 1 3.455

IterationPack::Algorithm: Found the interrupt file "interrupt.in"!
Just completed current step curr_step_name = "EvalNewPoint", curr_step_poss = 1 of
steps [1...9].
Read a value of abort_mode = ’i’: Will abort the program gracefully at the end of
this iteration!
Read a value of terminate_bool = ’f’: Will return a failure flag!

3 3.4 1.6e-005 0.23 DU 0.006 7 2 1 4.616
---- --------- --------- --------- --

3 3.4 1.6e-005 0.23 DU 0.006 7 2 1 4.626

Total time = 4.626 sec

Oops! Not the solution. The user terminated the algorithm and said to return
non-optimal!

Number of function evaluations:
-------------------------------
f(x) : 11
c(x) : 11
Gf(x) : 5
Gc(x) : 5
Some algorithmic error occurred!

Currently when an algorithm is interrupted and terminated, only the current status of
the solution variables are returned to the NLP (i.e. through the
Thyra::ModelEvaluator::reportFinalPoint() callback function) and
no internal check-pointing is performed. Therefore, a user should not expect to be
able to restart an interrupted algorithm and have it behave the same as if it was never

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



1.6 Representing Nonlinear Programs for MOOCHO to Solve 22

interrupted. MOOCHO currently does not support general check-pointing and
restarting but this is a feature that is on the wish list for MOOCHO for an upcoming
release.

This brings the MOOCHO quickstart to a conclusion. The remaining sections provide
more detailed information on topics mentioned in the above quickstart.

1.6 Representing Nonlinear Programs for MOOCHO to Solve

In order to utilize the most powerful rSQP algorithms in MOOCHO the NLP subclass
must support the NLPInterfacePack::NLP,
NLPInterfacePack::NLPFirstOrder, and
NLPInterfacePack::NLPVarReductPerm interfaces and must supply an
object that supports the AbstractLinAlgPack::BasisSystem and
AbstractLinAlgPack::BasisSystemPerm interfaces. The details of these
interfaces are really not the concern of a general user who just wants to solve an NLP.
Therefore, here we will only discuss some of the basic issues associated with these
interfaces and what adapter-support subclasses are available to help implement the
needed functionality.

As described above in the quickstart, there are two well supported tracts to developing
concrete NLP subclasses to be used with MOOCHO. Each of these tracts provides
support software that allow the user to provide only the most basic types of
information needed to define the NLP. The first type of NLPs that are supported are
general NLPs with explicit derivative components and these NLPs can only be solved
in serial. This first type requires a direct linear solver that can be used to select a basis
matrix. The second type are simulation-constrained NLPs that can be solved on
massively parallel computers by utilizing preconditioned iterative linear solvers. This
type of NLP is supported through the Thyra::ModelEvaluator interface and
can utilize much of the linear solver capability in Trilinos. The key difference in this
second type of NLP is that the application must know a priori what the selection of
state (or dependent) variables is in order to obtain a square and well conditioned basis
matrix.

These two approaches to defining NLPs are described in the next two sections
Representing General Serial NLPs with Explicit Jacobian Entries and Representing
Simulation-Constrained Parallel NLPs through Thyra.

1.6.1 Representing General Serial NLPs with Explicit Jacobian Entries

One type of NLP that MOOCHO can solve are general NLPs where explicit gradient
and Jacobian entries are available. This means that the gradient of the objective
function ∇f must be available in vector coefficient form and the gradient of the
constraints matrix ∇c (i.e. the rectangular Jacobian ∂c

∂x = ∇cT ) must be available in
sparse matrix form. In this type of problem, a basis matrix for the constraints need not
be known a priori but this requires the availability of a linear direct solver that can be

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



1.6 Representing Nonlinear Programs for MOOCHO to Solve 23

used to find a square nonsingular basis from a rectangular matrix. There are a few
direct solvers available that could in principle find a square basis given a rectangular
input matrix but MOOCHO only currently contains wrappers for LAPACK (i.e. dense
factorization using DEGETRF(...)) and the Harwell Subroutine Library (HSL)
routine MA28. The MA28 routine is the only viable option currently supported for
handling large sparse linear systems. In the past, other direct solvers have been
experimented with and an ambitious user can provide support for any direct solver
they would like (with the ability to find a square basis) by providing an
implementation of the AbstractLinAlgPack::DirectSparseSolver
interface. If your NLP can also provide explicit objective function gradients, then
your concrete subclass should derive from the
NLPInterfacePack::NLPSerialPreprocessExplJac subclass. More
details are given below.

The first utility base subclass for general serial (i.e. runs in a single process or perhaps
on an SMP) NLPs is NLPInterfacePack::NLPSerialPreprocess. This
utility class derives from the NLPInterfacePack::NLP,
NLPInterfacePack::NLPObjGrad, and
NLPInterfacePack::NLPVarReductPerm interfaces and takes care of a lot
of details like preprocessing out fixed variables, converting general inequality
constraints to equalities by the addition of slack variables and maintaining the current
basis permutations. All of this is done to transform the "original" NLP into standard
form. The "original" NLP can include general inequality constraints in addition to
general equality constraints. The "original" NLP, however, can also includes fixed
variables (i.e. (xL)(i) = (xU )(i)). There are several different intermediate forms of
the NLP that a NLPSerialPreprocess object maintains in the transformation
from the “original” NLP to the final form. The first type of transformation is the
addition of slack variables to convert the general inequality constraints into an extra
set of equality constraints. This is called the "full" form of the NLP. The second type
transformation is the removal of fixed variables which are preprocessed out of the
problem but leaving the general inequalities intact which some parts of a MOOCHO
algorithm may access (e.g. globalization steps) through the NLP interface. The last
type of transformation is the permutation of the variables and the constraints
according to the current basis selection. All of this functionality is very useful and this
makes the NLPSerialPreprocess subclass the place to start when going to
implement any type of serial NLP to be used with an rSQP algorithm. Note that this
subclass does not address the structure or handling of the Jacobian or Hessian matrices
in any way. The handling of these matrices is deferred to subclasses to define.

While it may seem that the details of the transformations performed by
NLPInterfacePack::NLPSerialPreprocess are of no concern to end
users, this is not always the case. For example, a user must understand how their
original NLP is transformed in order to understand the output printed in the
MoochoJournal.out file when the journal output level
NLPSolverClientInterface{journal_print_level} is set to a value
equal to or higher than PRINT_VECTORS.

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



1.6 Representing Nonlinear Programs for MOOCHO to Solve 24

Subclasses that wish to use a generic sparse data structure for the Jacobian matrix
∇cT and a generic sparse direct linear solver to select, factor and solve linear systems
with the basis matrix C should derive from the
NLPInterfacePack::NLPSerialPreprocessExplJac subclass (which
itself derives from NLPSerialPreprocess). This subclass performs all of the
same types of transformations as its NLPSerialPreprocess base class (i.e.
removal of entries for fixed variables, addition of slack variables and basis
permutations) with the explicit Jacobian entries that are supplied by the concrete NLP
subclass. The concrete implementations of both the Jacobian matrix subclass for Gc
and the BasisSystem subclass can be overridden by the client but yet have good
default implementations. The default implementation for the matrix class for Gc is
AbstractLinAlgPack::MatrixSparseCOORSerial (which uses a
coordinate sparse matrix format). The implementation of the
AbstractLinAlgPack::BasisSystem object is handled through a subclass of
AbstractLinAlgPack::BasisSystemFactory called
AbstractLinAlgPack::BasisSystemFactoryStd.

The AbstractLinAlgPack::BasisSystemFactoryStd subclass can create
AbstractLinAlgPack::BasisSystem objects implemented through several
different direct linear solvers. Currently, only the solvers LAPACK (for small, dense
Jacobians)and MA28 (for large, sparse systems) are currently supported (see the
options group BasisSystemFactoryStd to select what solver to use manually).
Note that MOOCHO must be configured with -enable-moocho-ma28 to support
the MA28 solver.

Warning! This NLP adapter-support software is going to most likely change in a
major way before the next major release of Trilinos. Therefore, it is recommended
that, if possible, users derive their NLPs from the Thyra-based simulation-constrained
interfaces described in the next section Representing Simulation-Constrained Parallel
NLPs through Thyra. However, this set of software is the only currently supported
way to solve certain types of general NLPs and therefore remains for the time being.

See examples above in the section Examples of General Serial NLPs with Explicit
Jacobian Entries.

1.6.2 Representing Simulation-Constrained Parallel NLPs through Thyra

Another type of NLP that can be solved using MOOCHO are simulation-constrained
NLPs where the basis section is known up front. For these types of NLPs, it is
recommended that the NLP be specified through the Thyra::ModelEvaluator
interface and this provides access to a significant linear solver capability through
Trilinos. These types of NLPs can also be solved in single program multiple data
(SPMD) mode in parallel on a massively parallel computer.

The Thyra::ModelEvaluator interface uses a different notation than the
standard MOOCHO NLP notation. The model evaluator notation is:

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



1.6 Representing Nonlinear Programs for MOOCHO to Solve 25

minimize g(x, p)
subject to f(x, p) = 0

xL ≤ x ≤ xU

pL ≤ p ≤ pU

where x ∈ <nx are the state variables, p ∈ <np are the optimization parameters,
f(x, p) = 0 are the discrete nonlinear state simulation equations, and g(x, p) is the
scalar-valued objective function. Here the state Jacobian ∂f

∂x must be square and
nonsingular. The partitioning of variables into state variables x and optimization
variables p must be known a priori and this partitioning can not change during an
optimization solve.

Comparing the MOOCHO notation for optimization problems using variable
decomposition methods which is

minimize f(xD, xI)
subject to c(xD, xI) = 0

xD,L ≤ xD ≤ xD,U

xI,L ≤ xI ≤ xI,U

we can see the mapping between the MOOCHO notation and the
Thyra::ModelEvaluator notation as summarized in the following table:

It is unfortunate that the notation used with the Model Evaluator interfaces and
software are different than those used by MOOCHO. The reason for this change in
notation is that the Model Evaluator had to first appeal to the forward solve
community where f(x, p) = 0 is the standard notation for the parameterized state
equation and changing the notation of all of MOOCHO after the fact to match this
would be very tedious to perform. We can only hope that the user can keep the above
mapping of notation straight between MOOCHO and the Model Evaluator.

Currently, and more so in the near future, a great deal of capability will be
automatically available when a user provides an implementation of the
EpetraExt::ModelEvaluator interface (as shown in the section Examples of
Simulation-Constrained NLPs using Thyra). For these types of NLPs, a great deal of
linear solver capability is available through the linear solver and preconditioners
wrappers in the Stratimikos package. In addition, the application will also have access
to many other nonlinear algorithms provided in Trilinos (see the Trilinos packages
NOX, LOCA, and Rythmos).

See examples above in the section Examples of Simulation-Constrained NLPs using
Thyra.

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



1.7 Other Trilinos Packages on which MOOCHO Directly Depends 26

1.7 Other Trilinos Packages on which MOOCHO Directly
Depends

MOOCHO has direct dependencies on the following Trilinos packages:

• teuchos: This package supplies basic utility classes such as
Teuchos::RCP and Teuchos::BLAS that MOOCHO software is
dependent on.

• rtop: This package supplies the basic interfaces for vector
reduction/transformation operators as well as support code and a library of
pre-written RTOp subclasses. Much of the software in MOOCHO depends on
this code.

MOOCHO also optionally directly depends on the following Trilinos packages:

• thyra: This package supplies interfaces and support software for SPMD and
other types of computing platforms and defines the interface
Thyra::ModelEvaluator for simulation-constrained optimization that
MOOCHO can use to define NLPs. See the option
-enable-moocho-thyra described in the section Configuration of the
MOOCHO Package.

• epetraext: This package provides an Epetra-specific interface for the model
evaluator called EpetraExt::ModelEvaluator and contains some
concrete examples that are used by MOOCHO.

• stratimikos: This package supplies Thyra-based wrappers for several serial
direct and massively parallel iterative linear solvers and preconditioners.

1.8 Configuration of the MOOCHO Package

The MOOCHO package’s configure script (which should be called from the base
Trilinos-level configure script) responds to a number of options that affect the code
that is built and what code is installed.

Some of the more important configuration options are:

• -enable-moocho: Causes the MOOCHO package and all of its dependent
packages to be enabled and built. Without this option, there will be no
MOOCHO header files or libraries included in the installation of Trilinos (i.e.
using make install).

• -enable-moocho-ma28: Causes the MOOCHO package to compile in
support for the sparse solver HSL MA28. Currently, this is the only supported
direct solver for large sparse systems where the basis matrix is not know up
front.

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen

file:../../../teuchos/doc/html/index.html
file:../../../rtop/doc/html/index.html
file:../../../thyra/doc/html/index.html
file:../../../epetraext/doc/html/index.html
file:../../../stratimikos/doc/html/index.html


1.8 Configuration of the MOOCHO Package 27

• -enable-moocho-thyra: Causes the MOOCHO package to compile in
support for Thyra::ModelEvaluator to support massively parallel
simulation-constrained optimization. Note that this option will be turned on by
default if -enable-moocho and -enable-thyra are both included.

• -enable-moocho-stratimikos: Causes the examples in the MOOCHO
package to compile in support for the linear solver wrappers through the
Stratimikos package. None of the software in the MOOCHO library has any
dependence on Stratimikos but none of the examples that Thyra depend on it
will be compiled or installed if this option is not included. Note that this option
will be turned on by default if -enable-moocho and
-enable-stratimikos are both included. This option is only meaningful
if Thyra support is enabled.

• -enable-export-makefiles: Causes the installation of the MOOCHO
package (an other Trilinos packages) to have the makefile fragments
Makefile.export.moocho and
Makefile.export.moocho.macros installed in the installation
directory $TRILINOS_INSTALL_DIR/include for use by external
makefiles (see the section Examples of General Serial NLPs with Explicit
Jacobian Entries). This option also causes the examples described in the section
Examples of Simulation-Constrained NLPs using Thyra to be installed.

See the output from Trilinos/pacakges/moocho/configure -help for a
complete listing of all of the configure options for which MOOCHO responds.

The MOOCHO package is also affected by configure options passed to other
packages. Here are some of of these options:

• -enable-teuchos-debug: Causes a great deal of error checking code to
be added to MOOCHO software.

• -enable-thyra: Enables all Thyra-based software by default and enables
the MOOCHO/Thyra adapters by default.

• -enable-epetraext-thyra: Causes the examples that depend on
EpetraExt::ModelEvaluator described in the section Examples of
Simulation-Constrained NLPs using Thyra to be compiled and installed. Note
that this is enabled by default if -enable-thyra and
-enable-epetraext are both included.

• -enable-stratimikos: Enables support for Stratimikos. Note that this
automatically enables -enable-moocho-stratimikos by default.

• -enable-amesos: Enables support for the Amesos linear solvers that can be
access through Stratimikos.

• -enable-aztecoo: Enables support for the AztecOO linear solvers that can
be access through Stratimikos.

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



1.9 Individual MOOCHO Doxygen Collections 28

• -enable-belos: Enables support for the Belos linear solvers that can be
access through Stratimikos.

• -enable-ifpack: Enables support for the Ifpack preconditioners that can
be access through Stratimikos.

• -enable-ml: Enables support for the ML preconditioners that can be access
through Stratimikos.

Note that the above options will not be listed by
Trilinos/packages/moocho/configure -help but instead are listed by
Trilinos/configure -help=recursive.

1.9 Individual MOOCHO Doxygen Collections

Below are links to individual doxygen collections that make up MOOCHO:

• MoochoUtilities: Collection of a small amount of utility code that is peculiar to
MOOCHO. Some of the software that is now in Teuchos such as
Teuchos::RCP and Teuchos::CommandLineProcessor were once in
this collection.

• IterationPack: "Framework" for building iterative algorithms that MOOCHO
is based on.

• RTOpPack: Legacy RTOp code that predates Thyra the Trilinos RTOp package
but it still used by MOOCHO. The current version of the Trilinos RTOp
package was developed from refactored code that once lived in this collection.

• DenseLinAlgPack: A C++ class library for dense, BLAS-compatible, serial
linear algebra that is similar to classes like
Teuchos::SerialDenseVector and
Teuchos::SerialDenseMatrix. This class library is used exclusively by
MOOCHO to deal with serial dense linear algebra.

• AbstractLinAlgPack: A C++ class library for abstract linear algebra. These
interfaces predate and helped to inspire Thyra but at this point should be
considered legacy software that should only be used within MOOCHO. It is
likely that a future refactoring of MOOCHO will involve largely removing
these classes and using Thyra-based software directly instead.

• NLPInterfacePack: Set of abstract interfaces based on
AbstractLinAlgPack for representing nonlinear programs (NLPs) (i.e.
optimization problems). These interfaces serve a similar role as the
Thyra::ModelEvaluator interface but there are many differences. In the
future, it is likely that these interfaces will be refactored to look more like the
Thyra::ModelEvaluator interface but are likely to remain distinct.

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen

file:../../src/RTOpPack/doc/html/index.html


1.10 Browse all of MOOCHO as a Single Doxygen Collection 29

• ConstrainedOptPack: Collection of utility software for building constrained
optimization algorithms that is based on AbstractLinAlgPack. Included
here are interfaces and adapters for QP solvers (with QPSchur being included
by default), line search interfaces and implementations, range/null space
decompositions and other such capabilities.

• MoochoPack: Provides nonlinear optimization algorithms for primarily rSQP
methods based on the IterationPack framework. This is where the real
algorithmic meat of nonlinear programing is found in MOOCHO. This
collection provides the "Facade" class MoochoPack::MoochoSolver.

• MOOCHO/Thyra Adapters: Provides adapter classes for allowing
MOOCHO to solve simulation-constrained optimization problems presented as
Thyra::ModelEvaluator objects. Also included is the higher-level
"Facade" class MoochoPack::MoochoThyraSolver.

1.10 Browse all of MOOCHO as a Single Doxygen Collection

You can browse all of MOOCHO as a single doxygen collection. Warning,
this is not the recommended way to learn about MOOCHO software. However, this is
a good way to browse the directory structure of MOOCHO, to locate files, etc.

1.11 Links to Other Documentation Collections

• Thyra: This package defines basic interfaces and support software for abstract
numerical algorithms.

• Thyra ANA Operator/Vector Adapters for Epetra: This
software includes the basic adapters needed to wrap Epetra objects and Thyra
objects.

• Various Thyra Adapters for EpetraExt: Included here are
adapters and interfaces that allow a perspective nonlinear application to specify
everything needed to define a wide range of nonlinear problems in terms by
subclassing an Epetra-based version of the Thyra::ModelEvaluator
interface (called EpetraExt::ModelEvaluator). This software allows
an appropriately defined Epetra-based model to be used to define a Thyra-based
model to be used to define an optimization problem that MOOCHO can then
solve.

• Stratimikos: Unified Wrappers for Thyra Linear
Solver and Preconditioner Capabilities: Stratimikos contains
neatly packaged access to all of the Thyra linear solver and preconditioner
wrappers. Currently, these allow the creation of linear solvers for nearly any
Epetra_RowMatrix object.

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen

file:../../src/MoochoPack/doc/html/index.html
file:../../thyra/doc/html/index.html
file:../../browser/doc/html/index.html
file:../../browser/doc/html/files.html
file:../../../thyra/doc/html/index.html
file:../../../epetra/thyra/doc/html/index.html
file:../../../epetraext/thyra/doc/html/index.html
file:../../../stratimikos/doc/html/index.html
file:../../../stratimikos/doc/html/index.html


2 MOOCHO Module Index 30

2 MOOCHO Module Index

2.1 MOOCHO Modules

Here is a list of all modules:

Sample MOOCHO input and output. 30

Sample MOOCHO Options File 31

Sample MOOCHO Console Output 32

Sample MOOCHO Algorithm Configuration Output (Moocho-
Algo.out) 32

Sample MOOCHO Algorithm Summary Output (Moocho-
Summary.out) 33

Sample MOOCHO Algorithm Journal Output (MoochoJournal.out) 33

3 MOOCHO Module Documentation

3.1 Sample MOOCHO input and output.

Collaboration diagram for Sample MOOCHO input and output.:

Modules

• Sample MOOCHO Options File
• Sample MOOCHO Console Output
• Sample MOOCHO Algorithm Configuration Output (MoochoAlgo.out)
• Sample MOOCHO Algorithm Summary Output (MoochoSummary.out)
• Sample MOOCHO Algorithm Journal Output (MoochoJournal.out)

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



3.2 Sample MOOCHO Options File 31

3.2 Sample MOOCHO Options File

Collaboration diagram for Sample MOOCHO Options File:

Below is a sample MOOCHO options file for some of the typical options that a user
might want to manipulate. The full set of options with documentation are shown here.

begin_options

options_group NLPSolverClientInterface {
max_iter = 20;
max_run_time = 2.0; *** In minutes
opt_tol = 1e-2;
feas_tol = 1e-7;

* journal_output_level = PRINT_NOTHING; * No output to journal from algorithm

* journal_output_level = PRINT_BASIC_ALGORITHM_INFO; * O(1) information usually
journal_output_level = PRINT_ALGORITHM_STEPS; * O(iter) output to journal [default]

* journal_output_level = PRINT_ACTIVE_SET; * O(iter*nact) output to journal

* journal_output_level = PRINT_VECTORS; * O(iter*n) output to journal (lots!)

* journal_output_level = PRINT_ITERATION_QUANTITIES; * O(iter*n*m) output to journal (big lots!)

* null_space_journal_output_level = DEFAULT; * Set to journal_output_level [default]

* null_space_journal_output_level = PRINT_ACTIVE_SET; * O(iter*nact) output to journal

* null_space_journal_output_level = PRINT_VECTORS; * O(iter*(n-m)) output to journal (lots!)
null_space_journal_output_level = PRINT_ITERATION_QUANTITIES; * O(iter*(n-m)^2) output to journal (big lots!)
journal_print_digits = 10;
calc_conditioning = true;
calc_matrix_norms = true; *** (costly?)
calc_matrix_info_null_space_only = true; *** (costly?)

}

options_group DecompositionSystemStateStepBuilderStd {

* null_space_matrix = AUTO; *** Let the solver decide [default]
null_space_matrix = EXPLICIT; *** Compute and store D = -inv(C)*N explicitly

* null_space_matrix = IMPLICIT; *** Perform operations implicitly with C, N (requires adjoints)

* range_space_matrix = AUTO; *** Let the algorithm decide dynamically [default]

* range_space_matrix = COORDINATE; *** Y = [ I; 0 ] (Cheaper computationally)
range_space_matrix = ORTHOGONAL; *** Y = [ I; -N’*inv(C’) ] (more stable)

}

options_group NLPAlgoConfigMamaJama {

* quasi_newton = AUTO; *** Let solver decide dynamically [default]
quasi_newton = BFGS; *** Dense BFGS

* quasi_newton = LBFGS; *** Limited memory BFGS

* line_search_method = AUTO; *** Let the solver decide dynamically [default]

* line_search_method = NONE; *** Take full steps at every iteration

* line_search_method = DIRECT; *** Use standard Armijo backtracking
line_search_method = FILTER; *** [default] Use the Filter line search method

}

end_options

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



3.3 Sample MOOCHO Console Output 32

3.3 Sample MOOCHO Console Output

Collaboration diagram for Sample MOOCHO Console Output:

Below is the console output generated by the program ExampleNLPBanded.exe
using the command-line arguments

given the Moocho.opt options file shown here.

Here is the other types of output that is associated with this run:

• Sample MOOCHO Algorithm Configuration Output (MoochoAlgo.out)

• Sample MOOCHO Algorithm Summary Output (MoochoSummary.out)

• Sample MOOCHO Algorithm Journal Output (MoochoJournal.out)

Console output:

3.4 Sample MOOCHO Algorithm Configuration Output
(MoochoAlgo.out)

Collaboration diagram for Sample MOOCHO Algorithm Configuration Output
(MoochoAlgo.out):

Below is the output file MoochoAlgo.out from the program
ExampleNLPBanded.exe using the command-line arguments

given the Moocho.opt options file shown here.

Here is the other types of output that is associated with this run:

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



3.5 Sample MOOCHO Algorithm Summary Output (MoochoSummary.out) 33

• Sample MOOCHO Console Output

• Sample MOOCHO Algorithm Summary Output (MoochoSummary.out)

• Sample MOOCHO Algorithm Journal Output (MoochoJournal.out)

Output file MoochoAlgo.out:

3.5 Sample MOOCHO Algorithm Summary Output
(MoochoSummary.out)

Collaboration diagram for Sample MOOCHO Algorithm Summary Output
(MoochoSummary.out):

Below is the output file MoochoSummary.out from the program
ExampleNLPBanded.exe using the command-line arguments

given the Moocho.opt options file shown here.

Here is the other types of output that is associated with this run:

• Sample MOOCHO Console Output

• Sample MOOCHO Algorithm Configuration Output (MoochoAlgo.out)

• Sample MOOCHO Algorithm Journal Output (MoochoJournal.out)

Output file MoochoSummary.out:

3.6 Sample MOOCHO Algorithm Journal Output
(MoochoJournal.out)

Collaboration diagram for Sample MOOCHO Algorithm Journal Output
(MoochoJournal.out):

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



4 MOOCHO Example Documentation 34

Below is the output file MoochoJournal.out from the program
ExampleNLPBanded.exe using the command-line arguments

given the Moocho.opt options file shown here.

Here is the other types of output that is associated with this run:

• Sample MOOCHO Console Output

• Sample MOOCHO Algorithm Configuration Output (MoochoAlgo.out)

• Sample MOOCHO Algorithm Summary Output (MoochoSummary.out)

Output file MoochoJournal.out:

4 MOOCHO Example Documentation

4.1 ExampleNLPBandedMain.cpp

4.2 NLPThyraEpetraAdvDiffReactOptMain.cpp

4.3 NLPThyraEpetraModelEval4DOptMain.cpp

4.4 NLPWBCounterExampleMain.cpp

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



4.4 NLPWBCounterExampleMain.cpp 35

MOOCHO Notation Thyra::Model-
Evaluator
Notation

Thyra::Model-
Evaluator
Description

m nx Number of state variables

n−m np Number of optimization
parameters

n nx + np Total number of
optimization variables

xD ∈ <m x ∈ <nx State variables

xI ∈ <n−m p ∈ <np Optimization parameters

c(xD, xI) ∈ <n → <m f(x, p)<nx+np → <nx State equation residual
function

f(xD, xI) ∈ <n → < g(x, p)<nx+np → < Objective function

C ∈ <m×m ∂f
∂x ∈ <

nx×nx Nonsingular state
Jacobian

N ∈ <m×n−m ∂f
∂p ∈ <

nx×np Optimization Jacobian

∇DfT ∈ <1×m ∂g
∂x ∈ <

1×nx Derivative of objective
with respect to state
variables

∇If
T ∈ <1×n−m ∂g

∂p ∈ <
1×np Derivative of objective

with respect to
optimization parameters

Table 1: Mapping of notation between MOOCHO and Thyra::ModelEvaluator
for simulation-constrained optimization problems.

Generated on Wed May 12 21:58:32 2010 for MOOCHO by Doxygen



Index
Sample MOOCHO Algorithm

Configuration Output
(MoochoAlgo.out), 32

Sample MOOCHO Algorithm Journal
Output (MoochoJournal.out),
33

Sample MOOCHO Algorithm Summary
Output (MoochoSummary.out),
33

Sample MOOCHO Console Output, 31
Sample MOOCHO input and output., 30
Sample MOOCHO Options File, 30


	MOOCHO: Multi-functional Object-Oriented arCHitecture for Optimization 
	MOOCHO Module Index
	MOOCHO Module Documentation
	MOOCHO Example Documentation

