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Abstract

IFPACK provides a suite of object-oriented algebraic preconditioners for the solution of precon-
ditioned iterative solvers.IFPACK constructors expect the (distributed) real sparse matrix to be an
EpetraRowMatrix object.IFPACK can be used to define point and block relaxation precondition-
ers, various flavors of incomplete factorizations for symmetric and non-symmetric matrices, and
one-level additive Schwarz preconditioners with variable overlap. Exact LU factorizations of the
local submatrix can be accessed through theAMESOSpackages.

IFPACK, as part of the Trilinos Solver Project, interacts well with other Trilinos packages. In
particular, IFPACK objects can be used as preconditioners forAZTECOO, and as smoothers for
ML . IFPACK is mainly written in C++, but only a limited subset of C++ features is used, in order
to enhance portability.

†Compatible with Trilinos Releases 5.0 and 6.0.X
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1 Introduction

The parallel solution of large linear systems of type

Ax = b, (1)

whereA is a (distributed) large, sparse matrix andx andb two real multi-vectors, is often achieved
using iterative solvers of Krylov type (see for instance [2]). It is well known that the convergence of
Krylov methods depends on the spectral properties of the linear system matrixA [1, 12, 9]. Often,A
is very ill-conditioned, so the original system (1) is replaced by

P−1Ax = P−1b

(left-preconditioning), or by
AP−1Px = b

(right-preconditioning), using a linear transformationP−1, calledpreconditioner, in order to improve
the spectral properties of the linear system matrix. In general terms, a preconditioner is any kind of
transformation applied to (1) which makes it easier to solve, in terms of iterations and CPU time.

The general (and challenging) problem of finding an efficient preconditioner is to identify a linear
operatorP with the following properties:

1. P is a good approximation ofA is some sense. Although no general theory is available, we can
say thatP should act so thatP−1A is near to being the identity matrix and its eigenvalues are
clustered within a sufficiently small region of the complex plane (see for instance [7]);

2. P is efficient, in the sense that the iteration method converges much faster, in terms of CPU time,
for the preconditioned system. In other words, preconditioners must be selected in such a way
that the cost of constructing and using them is offset by the improved convergence properties
they permit to achieve;

3. P or P−1 can be constructed in parallel, to take advantage of the architecture of modern
supercomputers.

The choice ofP varies from “black-box” algebraic techniques which can be applied to general
matrices to “problem dependent” preconditioners which exploit special features of a particular class of
problems. Although problem dependent preconditioners can be very powerful, there is still a practical
need for efficient preconditioning techniques for large classes of problems.IFPACK aims to fill the
need for general, black-box preconditioners, by providing a set of robust algebraic preconditioners for
parallel large scale applications.

Single-level algebraic preconditioners can be classified as follows:

1. Relaxation schemes, like Jacobi, Gauss-Seidel and symmetric Gauss-Seidel (point or block ver-
sions) [18]. These schemes seldomly provide satisfactory performances as stand-alone precon-
ditioner, but can be very effective if used as smoothers in multilevel methods (like, for example,
ML [15]);

2. Polynomial preconditioner, like Neumann, Least-Square, and Chebyshev [12].
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3. Incomplete Factorizations preconditioner, like IC(k), ILU(k), ILUT(k) [12];

4. One-level domain decomposition preconditioners of Schwarz type, with minimal or wider
overlap among the subdomains [16, 10]. The local linear problems can be solved with exact
factorizations, incomplete factorizations, or other techniques.

5. Sparse Approximate Inverses(like SPAI, AINV).

IFPACK aims to define preconditioners belonging to groups 1, 3 and 4. Preconditioners of class 2 can
be accessed through AztecOO. Libraries like ParaSails or SPAI are available to define preconditioners
of class 5 (see for instance [8, 3]).

Remark 1. Single-level preconditioners can be used as stand-alone preconditioners, on in conjunction
with multilevel preconditioners. In this latter case, the single-level preconditioner is reinterpreted as
a smoother for the multilevel hierarchy. Three families of multilevel (or multigrid) methods have been
proposed in the literature: geometric multigrid [4], the classical Ruge-Stüben algebraic multigrid
(AMG) [11], or smoothed aggregation (SA) [17]. The preconditioning package Hypre can be used to
define AMG preconditioners, while the Trilinos package ML can be used to build SA preconditioners.

The goal of this document is to provide an overview of allIFPACK preconditioners. Several ex-
amples are reported to illustrate how to define and useIFPACK objects. The manuscript is organized
as follows. Section 2 briefly outlines the theoretical background. A general description ofIFPACK

preconditioners is reported in Section 3. TheIFPACK factory class is detailed in Section 4. Several
examples of usage are reported in Section 5. Parameters forIFPACK preconditioners are reported in
Section 6. The analysis tools ofIFPACK are reported in Section 7. Configuration and building are
detailed in Section 8.

Further details can be found on the Doxygen documentation. Document [13] explains the design
of IFPACK. The usage of the Python interface is described in document [14].

2 Theoretical background

The aim of this section is to define concepts associated with algebraic preconditioning and establish
our notation. This section is not supposed to be exhaustive, nor complete on this subject. The reader is
referred to the existing literature for a comprehensive presentation.

2.1 Point Relaxation Scheme

IFPACK contains a set of simple preconditioners based on point relaxation methods. Beginning with
a given approximate solution, these methods modify the components of the approximation, one or a
few at a time and in a certain order, until convergence is reached. Although still popular in some
application areas, these preconditioners are now rarely used as stand-alone preconditioner; however,
they can provide successful smoothers for multilevel methods.

All IFPACK point preconditioners are based on the decomposition

A = D −E − F, (2)

whereD is the diagonal part ofA, −E the strict lower part, and−F the strict upper part. It is always
assumed that the diagonal entries ofA are all nonzero.
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2.1.1 Point Jacobi Preconditioner

Given a starting solutionx(0), the (damped) Jacobi method determines thei−th component of solution
of (1) at stepk ≥ 1 as

ai,ix
(k)
i = ω


 −

∑

j 6=i

ai,jx
(k−1) + bi




whereω is the damping parameter1 andai,j the (i, j) element of matrixA. This component-wise
equation can be rewritten in a vector form as

x(k) = ω
[

D−1(E + F )x(k−1) + D−1b
]
,

or, equivalently,

x(k) = x(k−1) + ωD−1(b−Ax(k−1)) = x(k−1) + ωD−1r(k−1), (3)

wherer(k−1) = b−Ax(k−1) is the residual at stepk − 1.
This preconditioner is symmetric.

2.1.2 Point Gauss-Seidel Preconditioner

The (damped) Gauss-Seidel method at stepk ≥ 1 can be written as

ai,ix
(k)
i = ω


−

∑

j<i

ai,jx
(k) −

∑

j>i

ai,jx
(k−1) + bi




whereω is the damping parameter. In vector form, one has

x(k) = x(k−1) + ω(D −E)−1(b−Ax(k−1)), (4)

which requires, at each stepk, the solution of a (lower) triangular linear system. This preconditioner is
non-symmetric.

2.1.3 Point SOR Preconditioner

The Successive Over Relaxation (SOR) method computes thek-th step using the relaxation sequence

x(k) = ωx
(k−1)
GS + (1− ω)x(k−1), (5)

wherex
(k−1)
GS is thek− 1 step of a (non-damped) Gauss-Seidel iteration. SOR is based on the splitting

ωA = (D − ωE)− (ωF + (1− ω)D),

so that (5) can also be written as

(D − ωE)x(k) = [ωF + (1− ω)D] x(k−1) + ωb.

This preconditioner is non-symmetric.

1Clearly, is used as a solver,ω must be set to 1 to converge to the solution of (1).
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2.1.4 Point SSOR Preconditioner

A Symmetric SOR (SSOR) step consist of the SOR step (5) followed by a backward SOR,

(D − ωE)x(k−1/2) = [ωF − (1− ω)D]x(k−1) + ωb

(D − ωF )x(k) = [ωE − (1− ω)D]x(k−1/2) + ωb.
(6)

This preconditioner is symmetric. Whenω = 1, we obtain

(D − E)x(k−1/2) = Fx(k−1) + b

(D − F )x(k) = Ex(k−1/2) + b.
(7)

This method is often called symmetric Gauss-Seidel.

2.2 Block Relaxation Schemes

Block relaxation schemes of Jacobi and Gauss-Seidel type generalize their point counterpart by updat-
ing a set of variables at the same time. Consider to partition the matrixA, the right-hand side and the
solution vector as follows:

A =




A1,1 A1,2 A1,3 . . . A1,m

A2,1 A2,2 A2,3 . . . A2,m

A3,1 A3,2 A3,3 . . . A3,m
...

...
...

...
...

Am,1 Am,2 Am,3 . . . Am,m




, x =




x1

x2

x3
...

xm




, b =




b1

b2

b3
...

bm




, (8)

in which the partitioning ofx andb into m blocks is compatible with the partitioning ofA. Also, it is
supposed that the diagonal blocksAi,i are square and assumed nonsingular.

Splitting (2) can still be used to define block Jacobi and block Gauss-Seidel algorithms, with the
following definitions ofD, E andF :

D =




A1,1

A2,2

A3,3

...
Am,m




, (9)

E = −




O
A2,1 O
A3,1 A3,2 O

...
...

...
Am,1 Am,2 Am,3 . . . O




, (10)

F = −




O A1,2 A1,3 . . . A1,m

O A2,3 . . . A2,m

O
...

O




, (11)
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A 4,4

A

A

A 3,3

2,2

1,1

Figure 1. The block Jacobi matrix with overlapping blocks.

Using definitions (9), (10) and (11), the block Jacobi method is simply as reported in equation (3).
Analogously, the block Gauss-Seidel is still described by equation (4), and the symmetric Gauss-Seidel
by equation (7).

An alternative definition of block relaxation scheme is as follows. Let us suppose to partition the
set of rows of the matrix intom setsSi, i = 1, . . . ,m, such that

Si ⊆ S, ∪iSi = S.

Let Vi be a booleann× ni matrix (whereni = card(Si)), whose entries are defined as

Vi,j =
{

1 if i ∈ Sj

0 otherwise

A general (damped) block Jacobi iteration can be defined as follows:

On each processor, for each blocki, Do (12)

x(k) = x(k−1) + ωV T
i A−1

i,i Vi(b−Ax(k−1)). (13)

Figure 1 graphically describes the block Jacobi with variable overlap among blocks.
The (damped) block Gauss-Seidel algorithm easily derives from (13), by immediately updating the

solution vector to compute the residual. The algorithm is as follows:

On each processor, for each blocki, Do (14)

x(k) = x(k−1) + ωV T
i A−1

i,i Vi(b−Ax(k)). (15)
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2.3 Incomplete Factorization Preconditioners

A broad class of effective preconditioners is based on incomplete factorization technique. Such precon-
ditioners are often referred to as incomplete lower/upper (ILU) preconditioners. ILU preconditioning
techniques lie between direct and iterative methods and provide a balance between reliability and nu-
merical efficiency. ILU preconditioners are constructed in the factored formP = L̃Ũ , with L̃ andŨ
being a lower and an upper triangular matrices, respectively. Solving withP involves two triangular
solutions.

ILU preconditioners are based on the observation that, although most matricesA admit an LU fac-
torizationA = LU , whereL is (unit) lower triangular andU is upper triangular, the factorsL andU
often contain too many nonzero terms, making the cost of factorization too expensive in time and mem-
ory use. The simplest type of ILU preconditioner is ILU(0), which is defined as proceeding through
the standard LU decomposition computations, but keeping only those terms inL̃ that correspond to
nonzero terms in the lower triangle ofA and similarly keeping only those terms iñU that correspond
to nonzero terms in the upper triangle ofA. Although effective for certain classes of problems, in some
cases the accuracy of the ILU(0) may be insufficient to yield an adequate rate of convergence. More
accurate factorizations will differ from ILU(0) by allowing somefill-in–that i, some of the elements
produced by the Gaussian elimination are kept in order to makeŨ and Ũ “closer” to the exact fac-
torizationL andU . The level-of-fill should be indicative of the size of the element: the higher the
level-of-fill, the smaller the elements. Several strategies have been proposed in the literature to define
the level-of-fill. One strategy is to compute the graph ofA(`+1) (` being the level-of-fill) and use this
sparsity pattern in the construction ofL̃ andŨ . The resulting class of methods is called ILU(k), wherek
is the level-of-fill. Other strategies consider dropping by value – for example, dropping entries smaller
than a prescribed threshold. Alternative dropping techniques can be based on the numerical size of the
element to be discarded. Numerical dropping strategies generally yield more accurate factorizations
with the same amount of fill-in as level-of-fill methods. The general strategy is to compute an entire
row of theL̃ andŨ matrices, and then keep only a certain number of the largest entries. In this way,
the amount of fill-in is controlled; however, the structure of the resulting matrices is undefined. These
factorizations are usually referred to as ILUT(k).

When solving a single linear system, ILUT(k) methods can be more effective than ILU(k). How-
ever, in many situations a sequence of linear systems must be solved where the pattern of the matrixA
in each system is identical but the values of changed. In these situations, ILU(k) is typically much more
effective because the pattern of ILU(k) will also be the same for each linear system and the overhead
of computing the pattern is amortized.

2.4 Condition Number Estimates

The condition of a matrixB, calledκp(B), is defined asκp(B) = ‖B‖p‖B−1‖p in some appropriate
normp. κp(B) gives some indication of how many accurate floating point digits can be expected from
operations involving the matrix and its inverse. A condition number approaching the accuracy of a
given floating point number system, about 15 decimal digits in IEEE double precision, means that any
results involvingB or B−1 may be meaningless.

The computation ofκp(B) is in general an expensive operation, and it is therefore to be avoided
unless necessary. (The Aztec library can be used to compute accurate estimates ofκ2(B) by using CG
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or GMRES.) On the other side, a crude estimate ofκ∞(B) can be cheaply computed as follows. The
∞-norm of a vectory is defined as the maximum of the absolute values of the vector entries, and the∞-
norm of a matrix B is defined as‖B‖∞ = max‖y‖∞=1 ‖By‖∞. A crude lower bound for theκ∞(B)
is ‖B−1e‖∞ wheree = (1, 1, . . . , 1)T . It is a lower bound becauseκ∞(B) = ‖B‖∞‖B−1‖∞ ≥
‖B−1‖∞ ≥ |B−1e‖∞.

2.4.1 A-priori Diagonal Perturbations

A well-known disadvantage of incomplete factorizations is that the two factors can be unstable. This
may occur, for instance, if matrixA in (1) is badly scaled, or if one of the pivotal elements occurs
to be very small. Computing the condition number estimate using methodCondest() can help to
detect ill-conditioned factorizations. The procedure is as follows. If this condition estimate is larger
than machine precision, say greater than1015, then it is possible that numerical errors in the applica-
tion of the preconditioner can destroy convergence of the iterative solver (that is, the iterative solver
starts to diverge, stagnates, or aborts because it detects ill-conditioning). In this case,a-priori diagonal
perturbations may be effective.

Diagonal perturbations operate as follows: instead of using the matrixA of (1), we perform the
factorization on a modified matrixB, whose elements are defined as

Bi,j = Ai,j i 6= j
Bi,i = α sgn(Ai,i) + ρAi,i,

(16)

whereα andρ are two real parameters, to be determined by the user.α represents an absolute threshold
added to the matrix, whileρ is a relative threshold (that is, the actual diagonal value of the matrix to
be factored isρ times the original value). Note thatB is never built, since the code modifies the
ExtractMyRowCopy() method, and updates the diagonal value.

This has the effect of forcing the diagonal values to have minimal magnitude ofα and to increase
each by an amount proportional toρ, and still keep the sign of the original diagonal entry.

Although no general theory to defineα andρ is available, it can be convenient to adopt the strategy
outlined in Figure 2.

Remark 2. Note that if the condition estimate of the preconditioner is well below machine precision
and one is not achieving convergence, then diagonal perturbation will probably not be useful. Instead,
one should try to construct a more accurate factorization by increasing the level-of-fill.

2.5 Additive Schwarz Preconditioners

IFPACK makes very easy to define and use domain decomposition preconditioners of (overlapping)
Schwarz type.

The basic idea of DD methods is to decompose the computational domainΩ into M smaller parts
Ωi, i = 1, . . . , M , called subdomains, such that∪M

i=1Ωi = Ω. Next, the original problem can be
reformulated within each subdomainΩi, of smaller size. This family of subproblems is coupled one
to another through the values of the unknown solution at subdomain interface. This coupling is then
removed at the expense of introducing an iterative process which involves, at each step, solutions on
theΩi with additional interface conditions on∂Ωi \ ∂Ω [10, 16],

12



1. Set the absolute thresholdα = 0.0 and the relative thresholdρ = 1.0 (equivalent to no perturba-
tion).

2. Define perturbed diagonal entries asdi = sign(di)α + diρ and compute the incomplete factors
L andU .

3. Computecondest = ‖(LU)−1e‖∞ wheree = (1, 1, . . . , 1)T .

4. If failure (condest > 1015 or convergence is poor), setα = 10−5, ρ = 1.0. Repeat Steps 2 and
3.

5. If failure, setα = 10−5, ρ = 1.01. Repeat Steps 2 and 3.

6. If failure, setα = 10−2, ρ = 1.0. Repeat Steps 2 and 3.

7. If failure, setα = 10−2, ρ = 1.01. Repeat Steps 2 and 3.

8. If still failing, continue alternate increases in the two threshold values.

Figure 2. Simplea priori Threshold Strategy

In overlapping Schwarz preconditioner, the computational domain is subdivided intooverlapping
subdomains, and local Dirichlet-type problems are then solved on each subdomain. The communica-
tion between the solutions on the different subdomains is here guaranteed by the overlapping region.

The additive Schwarz preconditioner can be written as:

P−1
AS =

M∑

i=1

PiA
−1
i Ri, (17)

whereM is the number of subdomains (that is, the number of processors in the computation),Ri is
an operator that restricts the global vector to the vector lying on subdomainΩi, Pi is an operator that
prolongate from subdomainΩi to Ω, and

Ai = RiAPi. (18)

IFPACK supports two major cases:

• Minimal-overlap (here referred to as ”zero-overlap”): each subdomain is identified by the set
of local rows of the preconditioned matrix; The operatorsRi’s andPi’s are not implemented,
since the required components of the residual vector are already local. Besides, matrix (18) can
be easily extracted from the local matrix, by dropping all nonzeros corresponding to non-local
columns with no communications between processors.
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• Wider overlap: each subdomain is identified by the set of local rows of a suitable overlapping
matrix. Each application ofRi andPi may require the importing or exporting of off-process
data, and the construction of (18) requires communications.

In both cases, each processor is responsible for exactly one subdomain.

Remark 3. Additive Schwarz preconditioners as reported in equation (17) are not scalable: their
convergence rate deteriorates as the number of subdomains (that is, of the processors) increases. Al-
gebraic techniques exist to add an algebraic coarse level correction to (17) to make the preconditioner
scalable; see for example the documentation of the ML package [15].

3 General Description ofIFPACK Preconditioners

All IFPACK preconditioners described in this document are reported in Table 1. They are all derived
from theIfpack_Preconditioner class.

Ifpack_Preconditioner is a pure virtual class, derived fromEpetra_Operator , that
standarizes the construction and usage ofIFPACK preconditioners. In fact, allIFPACK preconditioners
are supposed to behave as follows:

1. The object is constructed, passing as only input argument the pointer of the matrix to be precon-
ditioned, sayA. A has already beenFillComplete() ’d2.

2. All the parameters, stored in aTEUCHOSparameters list, are set using methodSetParameters() .
If SetParameters() is not called, default values will be used.

3. The preconditioner is initialized by calling methodInitialize() . In this phase, all opera-
tions that do not require the matrix values ofA are performed (that is, only the structure ofA is
used).

4. The preconditioner is constructed by calling methodCompute() . In this phase, all the opera-
tions that require the matrix values ofA are performed3. It calls Initialize() if not already
done by the user.

5. MethodApplyInverse() applies the preconditioner. Any class that usesApplyInverse()
to apply the preconditioner can take advantage of anIfpack_Preconditioner derived ob-
ject4 Note thatCompute() must have been successfully called before usingApplyInverse() .

6. MethodIsInitialized() returnstrue is the preconditioner has been successfully initial-
ized,false otherwise.

7. MethodIsComputed() returnstrue is the preconditioner has been successfully computed,
false otherwise.

2It is supposed that theOperatorDomainMap() , the OperatorRangeMap() and theRowMatrixRowMap()
of the matrix all coincide, and that each row is assigned to exactly one process.

3For example, in a time dependent setting, if the structure ofA does not change from a given time step to the next but its
values do, the user can callInitialize() only once before the first time step, thenCompute() at each time step.

4For example,AztecOO objects can useIfpack Preconditioner objects as preconditioners.
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8. MethodCondest() returns an estimation of the condition number of the preconditionerP (and
not of the preconditioner system), see Section 2.4. Accurate (and expensive) computations of the
condition number of the preconditioned system can be obtained by callingCondest(Ifpack CG)
or Condest(Ifpack GMRES)5. See Section 2.4.1 for more details.

9. MethodsNumInitialize() , NumCompute() andNumApplyInverse() return the num-
ber of calls to each phase.

10. MethodsInitializeTime() , ComputeTime() andApplyInverseTime() return the
number of CPU-time spent in each phase.

11. MethodsInitializeFlops() , ComputeFlops() and ApplyInverseFlops() re-
turn the number floating point operations (FLOPS) occurred in each phase.

12. MethodAreFlopsComputed() returntrue is the preconditioner counts the flops,false
otherwise.

Remark 4. SomeIFPACK preconditioners may require to copy the inputList object given in input to
SetParameters() . In any case, the user-provided list can go out of scope beforeCompute() is
called. Note that changes to user-provided list after the call toSetParameters() will not affect
the preconditioner, unlessSetParameters() is re-called.

Remark 5. EachIpfack_Preconditioner object overloads the<< operator. Basic information
about a given preconditioner can be obtained by simply using an instruction of the type:cout << Prec .

4 The Factory Class

The easiest way to define preconditioners of type (17) inIFPACK is through its factory class. Let us
consider the following fragment of code, which constructs an ILU(5) preconditioner, with minimal
overlap.

#include "Ifpack.h"
...
Epetra_RowMatrix * A; // A is already FillComplete()’d
...
Ifpack Factory;
Ifpack_Preconditioner * Prec;
string PrecType = "ILU";
// create the preconditioner using Create()
Prec = Factory.Create(PrecType, A);
assert (Prec != 0);

// specify parameters for ILU

5We note that using CG or GMRES to compute and estimated condition number is an expensive operations; see discussion
in Section 2.4.
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PrecType Description

IC Incomplete Cholesky factorization on each subdomain.
ICT Incomplete Cholesky factorization with threshold on each subdo-

main.
ILU Incomplete LU factorization on each subdomain.
ILUT Incomplete LU with threshold on each subdomain.
Amesos Complete LU factorization on each subdomain. RequiresIFPACK

support forAMESOS.

Table 2. List preconditioners supported by the Factory class.

Teuchos::ParameterList List;
List.set("fact: level-of-fill", 5);

Prec->SetParameters();
Prec->Initialize();
Prec->Compute();
...
// Let Problem be an Epetra_LinearProblem
AztecOO Solver(Problem);
Problem.SetPrec(Prec);
// now we can solve with AztecOO

The difficulty with this type of preconditioner is that it tends to become less robust and require
more iterations as the number of processors used increases. This effect can be offset to some extent by
allowing overlap. Overlap refers to having processors redundantly own certain rows of the matrix for
the ILU factorization. Level-1 overlap is defined so that a processor will include rows that are part of its
original set. In addition, if rowi is part of its original set and rowi of A has a nonzero entry in column
j, then rowj will also be included in the factorization on that processor. Other levels of overlap are
computed recursively. IFPACK supports an arbitrary level of overlap. However, level-1 is often most
effective. Seldom more than 3 levels are needed.

To increase the overlap among processors, one can simply call methodCreate() as follows:

int OverlapLevel = 2;
Prec = Factory.Create(PrecType, A, OverlapLevel);

The list of options forPrecType is reported in Table 2. Note that only one word in the above
fragment of code has to be changed to define, for instance, the Gauss-Seidel preconditioner.
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5 Examples of Usage

This section contains several examples of usage ofIFPACK preconditioners. A detailed list ofIFPACK

parameters is reported in section 6.

5.1 Point Relaxation Schemes

An example of usage of point relaxation preconditioners (in this case, Gauss-Seidel) is as follows:

#include "Teuchos_ParameterList.hpp"
#include "Ifpack_PointRelaxation.h"

Let A be a pointer to anEpetra_RowMatrix derived object, and letProblem be a pointer to
an Epetra_LinearProblem . We suppose thatA and Problem are properly set, and method
FillComplete() has been called. At this point, we can create the preconditioner as

Teuchos::ParameterList List;
List.set("relaxation: type", "Gauss-Seidel");

Ifpack_PointRelaxation Prec(A);

IFPACK_CHK_ERR(Prec.SetParameters(List));
IFPACK_CHK_ERR(Prec.Initialize());
IFPACK_CHK_ERR(Prec.Compute());

Now, we can set the IFPACK preconditioner for AztecOO:

AztecOO AztecOOProblem(Problem);
AztecOOProblem.SetPrecOperator(Prec);

as callAztecOO.Iterate() as required.
Macro IFPACK_CHK_ERR() can be used to check return values. If the return value if different

from 0, the macro prints out a warning message oncerr , and returns.

Remark 6. Point relaxation schemes are implemented inIFPACK for general EpetraRowMatrix’s and
they therefore require several calls to methodExtractMyRowCopy() . This approach make point
relaxation schemes quite flexible, but potentially slower than implementations tuned for a particular
matrix format.

5.2 Block Relaxation Schemes

From the point of view of the implementation, block preconditioners are sensibly more complex than
their point counterpart:

1. A strategy to define the blocks has to be chosen (for instance, a linear partitioner, or a graph
decomposition algortithm);
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2. block Jacobi and block Gauss-Seidel algorithms require the application of the inverse of each
diagonal blockAi,i. Blocks of small dimension should be stored as dense matrices, while larger
blocks require sparse storage. In this latter case, to apply the inverse of the block can be refor-
mulated as applying a preconditioner for matrixAi,i. The code must allow for different choices
of block preconditioners.

Let us start with the definition of the blocks.IFPACK provides the following options:

• a linear partitioning, using classIfpack_LinearPartitioner ;

• a simple greedy algorithm, using classIpfack_GreedyPartitioner ;

• an interface to METIS, using classIfpack_METISPartitioner .

It is important to note that all blocks arelocal – that is, all partitioner schemes willalwaysdecompose
the local graph only6.

All IFPACK partitioners are derived from the pure virtual classIfpack_Partitioner , and all
require in the constructor phase anIfpack_Graph object.Ifpack_Graph ’s can be easily created
(as light-weigth) conversions fromEpetra_RowMatrix ’s andEpetra_CrsGraph ’s, as follows
At this point, we can create the preconditioner as

#include "Ifpack_Graph.h"
#include "Ifpack_Graph_Epetra_CrsGraph.h"
#include "Ifpack_Graph_Epetra_RowMatrix.h"

// use either CsrA or RowA, depending on your application
Epetra_CrsMatrix * CrsA;
Epetra_RowMatrix * RowA;

Ifpack_Graph CrsGraph * CrsGraph =
new Ifpack_Graph_CrsGraph(&(CrsA->Graph()));

Ifpack_Graph RowGrap * RowGraph =
new Ifpack_Graph_RowMatrix(RowA);

Note that thePartitioner object will decompose the graph (eitherCrsGraph or RowGraph) into
non-overlapping sets (that is, each graph vertex is assigned to exactly one set).

The following fragment of code shows how to use a greedy partitioner to define 4 local blocks for
a givenIfpack_Graph .

#include "Ifpack_Graph.h"
#include "Ifpack_GreedyPartitioner.h"
#include "Ifpack_BlockRelaxation.h"
#include "Teuchos_ParameterList.hpp"
...

6If used in conjuction with classIfpack AdditiveSchwarz , blocks can span more than one processor.
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Ifpack_Graph * Graph;
// Graph is created here

Teuchos::ParameterList List;
List.set("partitioner: local parts", 4);
Ifpack_Partitioner * Partitioner = new Ifpack_GreedyPartitioner(Graph);

// set the parameters (in this case the # of blocks only)
Partitioner->SetParameters(List);

// compute the partition
Partitioner->Compute();

Once anIfpack_Partitioner is created, we are ready to compute the block preconditioner.
This requires the extraction of all the diagonal blocks of equation (9). InIFPACK, the user can choose
to store theAi,i as dense matrices, or a sparse matrices. In the former case, the inverse of each block is
applied using LAPACK7. In the latter, the user can specify any validIfpack_Preconditioner .

As an example, we now create a block Jacobi preconditioner for a givenEpetra_RowMatrix ,
sayA, with damping parameter of 0.67, and 2 sweeps. Each diagonal block is stored as a dense matrix.

#include "Ifpack_BlockRelaxation.h"
#include "Ifpack_DenseContainer.h"
...

Ifpack_Partitioner * Partitioner;
// Partitioner is created here

Ifpack_Preconditioner * Prec =
new Ifpack_BlockRelaxation<Ifpack_DenseContainer>(A);

Teuchos::ParameterList List;
List.set("relaxation: sweeps", 2);
List.set("relaxation: damping parameter", 0.67);
Prec->SetParameters(List);
Prec->Compute();

The previous example makes use of a dense containers to store the diagonal blocks. InIFPACK, a
containeris an object that contains all the necessary data to solve the linear system with any givenAi,i.
Ifpack_DenseContainer stores eachAi,i asEpetra_SerialDenseMatrix . Alternatively,
one can useIpfack_SparseContainer to store each block as anEpetra_CrsMatrix . Sparse
containers are templated with anIfpack_Preconditioner , so that the user can specify which
IFPACK preconditioner has to be used to apply the inverse of each sparse block.

7LAPACK is used to factorize the matrix, then each application ofA−1
i,i results in a dense linear system solution.
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The following fragment of code illustrates how to use the direct factorization of Amesos (through
classIfpack_Amesos 8) with sparse containers. The preconditioner will be a block Gauss-Seidel
one.

#include "Ifpack_BlockRelaxation.h"
#include "Ifpack_SparseContainer.h"
#include "Ifpack_Amesos.h"
...

Ifpack_Partitioner * Partitioner;
// Partitioner is created here

Ifpack_Preconditioner * Prec =
new Ifpack_BlockRelaxation<Ifpack_SparseContainer<Ifpack_Amesos> >(A);

Teuchos::ParameterList List;
List.set("relaxation: sweeps", 2);
List.set("amesos: solver type", "Amesos_Klu");
Prec->SetParameters(List);
Prec->Initialize();
Prec->Compute();

Option amesos: solver type specifies theAMESOS solver that has to be adopted. If the
selected solver is not available, thenIfpack_Amesos will create anAmesos_Klu solver9. As any
IFPACK preconditioner can be used, one can also adopt, for instance, a point Gauss-Seidel algorithm in
each block:

Ifpack_Preconditioner * Prec =
new Ifpack_BlockRelaxation<Ifpack_SparseContainer<Ifpack_GaussSeidel> >(A);

A call to SetParameters(List) will set the parameters for the block preconditioner.

5.3 Additive Schwarz Preconditioners

Once matrices (18) have been formed, the user still need to define a strategy to apply the inverse ofAi

in (17). At this purpose, anyIFPACK preconditioner can be adopted. Common choices are:

• To solve exactly on each subdomain with an complete LU factorization, using theIfpack_Amesos
preconditioner. This is shown in Section 5.3.1.

• To solve using an incomplete LU factorization (ILU), as presented in Section 5.3.2.

• To furtherly decompose the local domain into smaller subdomains, then apply a block Jacobi or
block Gauss-Seidel preconditioner. This is outlined in Section 5.3.3.

8This requiresIFPACK to be configured with option--enable-amesos .
9KLU is compiled by default withAMESOS. Please consult theAMESOSdocumentation for more details.
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5.3.1 Additive Schwarz with Exact Local Solves

The following fragment of code shows the use of additive preconditioners. The local subproblems with
matrixAi are solved using a (complete) LU factorization throughAMESOS.

#include "Ifpack_AdditiveSchwarz.h"
#include "Ifpack_Amesos.h"

Epetra_RowMatrix * A;
// Here the elements of A are filled, and FillComplete() is called.

int OverlapLevel = 0;
Ifpack_Preconditioner * Prec =

new Ifpack_AdditiveSchwarz<Ifpack_Amesos>(A, OverlapLevel);

Teuchos::ParameterList List;
IFPACK_CHK_ERR(Prec->SetParameters(List));
IFPACK_CHK_ERR(Prec->Initialize());
IFPACK_CHK_ERR(Prec->Compute());

Remark 7. Complete factorizations can be expensive to compute, especially for problems arising from
discretizations on 3D grids. The user should consider complete factorizations if the local problems are
small, or when other, cheaper preconditioners fail.

5.3.2 Additive Schwarz with ILU

The following fragment of code shows the use of additive preconditioners. The local subproblems with
matrixAi are solved using an incomplete factorization.

#include "Ifpack_AdditiveSchwarz.h"
#include "Ifpack_ILU.h"

Epetra_RowMatrix * A;
// Here the elements of A are filled, and FillComplete() is called.

int OverlapLevel = 0;
Ifpack_Preconditioner * Prec =

new Ifpack_AdditiveSchwarz<Ifpack_ILU>(A, OverlapLevel);

Teuchos::ParameterList List;
List.set("fact: level of fill", 2);
IFPACK_CHK_ERR(Prec->SetParameters(List));
IFPACK_CHK_ERR(Prec->Initialize());
IFPACK_CHK_ERR(Prec->Compute());

The user can access the factorization of the local matrix produced by templatingIfpack_AdditiveSchwarz
with classesIfpack_IC , Ifpack_ICT , Ifpack_ILU andIfpack_ILUT in the following way:
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Ifpack_Preconditioner * Prec =
new Ifpack_AdditiveSchwarz<Ifpack_ILU>(A, OverlapLevel);

Ifpack_ILU * Inverse = Prec->Inverse();

Then, the total number of nonzeros in the L and U factors can be queried as follows:

int NumGlobalNonzerosLU = Inverse->NumGlobalNonzeros();

The L and U factors are stored asEpetra_CrsMatrix ’s, whose pointers can be obtained as fol-
lows10:

const Epetra_CrsMatrix& L = Inverse->L();
const Epetra_CrsMatrix& U = Inverse->U();

5.3.3 Additive Schwarz with Local Block Preconditioners

Another possible technique to apply the inverse ofAi in (17) is to adopt a block preconditioner, like
block Jacobi or block Gauss-Seidel (see Section 2.2). This requires a bit more work, as we have to
specify the partitioner, and the container. Let us start with dense containers.

The required include files are:

#include "Ifpack_AdditiveSchwarz.h"
#include "Ifpack_BlockPreconditioner.h"
#include "Ifpack_Graph_Epetra_RowMatrix.h"
#include "Ifpack_DenseContainer.h"

Let A be anEpetra_RowMatrix . We suppose thatFillComplete() has been called.
As always, we create a parameters list, that will be used for allIFPACK objects:

Teuchos::ParameterList List;

At this point we can create the block Jacobi preconditioner as follows:

Ifpack_Preconditioner * Prec =
new Ifpack_AdditiveSchwarz<

Ifpack_BlockPreconditioner<Ifpack_DenseContainer> >(A);

Prec->SetParameters(List);
Prec->Initialize();
Prec->Compute();

As we have usedIfpack DenseContainer , blocks are stored are dense matrices, and LAPACK is
used to apply the inverse of each block. This can be a limiting factor for large blocks. In this latter case,
it is preferable to store the blocks are sparse matrices, and use a sparse solver to apply their inverse.
This can be done by resorting toIfpack SparseContainer . Sparse containers can be used with
minor modifications. The only difference is that we also have to specify how to apply the inverse of
each block, for instance using the exact factorizations ofAMESOS:

10For classesIfpack IC andIfpack ICT the user shall use methodH() .
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Ifpack_Preconditioner * Prec =
new Ifpack_AdditiveSchwarz<Ifpack_BlockPreconditioner

<Ifpack_SparseContainer<Ifpack_Amesos> > >(A);

Should the user want to use a block Gauss-Seidel preconditioner (where each block is defined by
partitioning the local graph of the overlapping matrix), he/she could proceed as follows:

Teuchos::ParameterList List;
List.set("relaxation: damping factor", .67);
List.set("relaxation: sweeps",5);
List.set("partitioner: local parts", 4);
List.set("partitioner: overlap", OverlapLevel);

Epetra_RowMatrix * A; // A is FillComplete()’d.

Ifpack_Preconditioner * Prec =
new Ifpack_AdditiveSchwarz<Ifpack_BlockPreconditioner

<Ifpack_SparseContainer<Ifpack_Amesos> > >(A,OverlapLevel);

IFPACK_CHK_ERR(Prec->SetParameters(List));
IFPACK_CHK_ERR(Prec->Compute());

6 Parameters for IFPACK preconditioners

The parameters that affect theIFPACK preconditioners are reported below. It is important to note that
parameters for allIFPACK preconditioners must be spelled as indicated: misspelled parameters will be
ignored, parameters are case sensitive, and words are separated by one space only.

For more details about theTEUCHOS parameters list we refer to theTEUCHOS documentation.
Table 3 briefly reports the most important methods of this class.IFPACK requires just a very basic
usage of the parameters list. Input parameters are set via methodset(Name,Value) , whereName
is a string containing the parameter name, andValue is the specified parameter value, whose type can
be any C++ object or pointer.

set(Name,Value) Add entryNamewith value and type specified byValue . Any
C++ type (like int, double, a pointer, etc.) is valid.

get(Name,DefValue) Get value (whose type is automatically specified byDefValue ).
If not present, returnDefValue .

subList(Name) Get a reference to sublistList . If not present, create the sublist.

Table 3. Some methods of Teuchos::ParameterList class.

relaxation: type [string ] Relaxation scheme. Valid choices
are: Jacobi , Gauss-Seidel , symmmetric
Gauss-Seidel . Default:Jacobi .
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relaxation: sweeps [int ] Number of sweeps of the point relaxation pre-
conditioner. Default:1.

relaxation: damping factor [double ] Value of ω in formulae (3), (4), (5) and (6).
Default:1.0 .

relaxation: min diagonal value [double ] Replace diagonal values whose absolute
value is less than the specified value by this value (for
point relaxation methods only). Default:1e-9 .

relaxation: zero starting
solution

[bool ] If true , the input values in the preconditioned
vector will be used as starting solution (for relaxation
methods only). Default:true .

partitioner: type [string ] Defines how to build the local blocks (for
block relaxation methods). Valid choices are:linear
(use a simple linear decomposition),greedy (use
a greedy algorithm to partition the local graph), or
metis (call METIS on the local graph). Default:
linear .

partitioner: local parts [int ] Number of (local) subgraphs (for block relax-
ation methods only). Default: 4.

partitioner: overlap [int ] Overlap among blocks. Only for the block Jacobi
method. Default: 0.

partitioner: root node [int ] Root node, for greedy algorithm only. Default: 0

schwarz: combine mode [Epetra CombineMode ]. It can assume one of the
following values: Add: Components on the receiving
processor will be added together;Zero : Off-processor
components will be ignored;Insert : Off-processor
components will be inserted into locations on receiv-
ing processor replacing existing values.Average :
Off-processor components will be averaged with ex-
isting; AbsMax: Magnitudes of Off-processor compo-
nents will be maxed with magnitudes of existing com-
ponents on the receiving processor. Note that, for non-
zero overlap values, the preconditioner is in general
non-symmetric, due to the handling of the overlapping
region. Set this parameter toInsert if a symmetric
preconditioner is required. Default:Zero .
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amesos: solver type [string ]. Defines the Amesos solver to
be used by class IfpackAmesos. Valid val-
ues are: Amesos Lapack , Amesos Klu ,
Amesos Umfpack , Amesos Superlu ,
Amesos Mumps, Amesos Dscpack . Default:
Amesos Klu .

fact: level-of-fill [int ] Level-of-fill for IC and ILU.

fact: ict level-of-fill [double ] Level-of-fill for ICT.

fact: ilut level-of-fill [double ] Level-of-fill for ILUT.

fact: relax value [double ] Relaxation value.

fact: absolute threshold [double ] Value ofα in equation (16).

fact: relative threshold [double ] Value ofρ in equation (16).

7 Analysis Tools

IFPACK contains the following tools to analyze a linear system matrix:

• FunctionIfpack Analyze() reports some information about the structure of the matrix, its
diagonal elements, and others.

• Function Ifpack PrintSparsity() prints on a PostScript file the sparsity pattern of a
givenEpetra RowMatrix .

• FunctionIfpack PrintSparsitySimple() , to be used only with small matrices, prints
on a screen the sparsity pattern of a givenEpetra RowMatrix .

8 Configuring and Building IFPACK

We recommend to configure and buildIFPACK as part of the standardTRILINOS build and configure
process. In fact,IFPACK is built by default if you follow the standardTRILINOS configure and build
directions. Please refer to theTRILINOS documentation for information about the configuration and
building of otherTRILINOS packages.
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To configure and buildIFPACK throughTRILINOS, you may need do the following (actual con-
figuration options may vary depending on the specific architecture, installation, and user’s need). It’s
assumed that shell variable$TRILINOS_HOMEidentifies theTRILINOS directory, and, for example,
that we are compiling under LINUX and MPI.

% cd $TRILINOS_HOME
% mkdir LINUX_MPI
% cd LINUX_MPI
% $TRILINOS_HOME/configure --with-mpi-compilers \

--prefix=$TRILINOS_HOME/LINUX_MPI
% make
% make install

IFPACK is configured and built using the GNU autoconf [5] and automake [6] tools.IFPACKconfiguration
and compilation can be tuned by several flags. The user may type

% configure --help

in theIFPACK source directory for a complete list. Here, we briefly report the list of packages (included
or not in Trilinos) that are supported byIFPACK:

--enable-amesos Enables support for theAMESOS package, which can
be used to solve the local subproblems in Schwarz-type
preconditioners, or in block Jacobi and block Gauss-
Seidel preconditioners.

--enable-aztecoo Enable support for the AZTECOO package.
AZTECOO is used in several tests and examples.

--enable-teuchos Enable support for theTEUCHOSpackage, whose para-
meters list is used by severalIFPACK classes.

--enable-triutils Enable support for theTRIUTILS package, which is
used in some examples and test to generate the linear
system.

--enable-ifpack-metis Enable support for theMETIS package, version 4.0 or
later.METIS can be used to create block precondition-
ers.

Remark 8. IFPACK cannot be compiled without theEPETRA library.
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