
Carter Edwards, Todd Coffey,

Dan Sunderland, Alan Williams

STK-Mesh Example Dynamic Mesh Modification

Outline

 The Meta-Data

 Modifying the Bulk-Data

• Maintaining Consistency

 Bulk-Data State

 Parallel Consistency

 Local Consistency

 Field Data

 Atomic Modifications

 Gear Demo

• Overview

• Code snippets necessary to strip teeth off of the gear

2

Mesh Modification

Meta-Data

• Equivalent to the schema of a database, the meta-data

describes the problem domain

• Freely modifiable before being committed

• No modifications allowed after commit

3

Mesh Modification

Bulk-Data

• Contains the discretization of the problem

• Its meta-data must be committed before any function

beside the bulk-data constructor can be called

 Meta-data check for global consistency will throw if the meta-data

is not globally consistent

• Bulk-data modifications are only allowed when the bulk-

data is in a modifiable state.

4

Modification Cycle

 Parallel Consistent

• NO Mesh modification allowed

 Modifiable

• Guaranteed to be locally consistent

• Atomic mesh modifications are allowed

Parallel consistency is enforced when switching from Modifiable to

Parallel Consistent

5

Parallel

Consistent
restore parallel consistency

Modifiable

(structurally)

Maintaining Consistency

 The bulk-data state is transitioned by calling

• A new modification cycle begins whenever modification begin is called

• Atomic mesh modifications mark affected entities and all their upward

relations as modified

• Parallel consistency is enforced at modification end by

 Deleting all ghosts of modified entities

 Resolving parallel ownership and sharing of created and destroyed entities

 Resolving shared entities mesh part membership, entity relations, field data

memory allocation, and bucket membership

 Updating the one layer ghosted aura

bulk_data.modification_begin()

bulk_data.modification_end()

6

Maintaining Consistency

 The following operations are available through Atomic Mesh

Modifications

• Creating and/or deleting entities

• Changing entities’ mesh part memberships

• Changing entities’ relations

• Moving entities’ ownership to another process

 Atomic modifications are guaranteed to be locally consistent

• Induced mesh part membership will change as necessary

• Memory for field data will be created, resized, or deleted

• Existing field data will move to the correct bucket

7

Maintaining Consistency

Field Data

 Communicating field data does not modify the topology of the mesh and can

happen at any time (i.e. not restricted to a modifiable bulk-data)

 Atomic mesh modifications will move existing field data to the correct bucket

on the local process

When changing entity owner the field data is moved to the correct

bucket on the remote process

 After modification end space for field data of ghosted and shared entities has

be allocated but the data has not been copied from the owner

 Field data values can be copied from owned to shared/ghosted at any time

by calling

bulk_data.communicate_field_data(…);

8

Simple Mesh Modification Example

 Breaking teeth off of the gear

• Distribute mesh over available processes

• Create 6 new nodes to attach to the wedge

• Destroy the relationship between the current nodes and the

wedge

• Attach the new nodes to the wedge

• Copy the field data from the current nodes to the new nodes

 The current nodes stay with the body gear

9

Putting it all together

10

Distribute mesh across available processes

 Change entity owner (moving the entity to another process)

• The bulk data function change_entity_owner is a parallel

collective call that gives away ownership of entities to other

processes

//EntityProc is the pair

//(Entity *owned_entity, unsigned to_proc_id)

std::vector< stk::mesh::EntityProc> > move_entities;

// move the wedge to proc 2

if (bulk_data.parallel_rank() == 0) {

move_entites.push_back(std::pair(&wedge,2));

}

// Parallel collective call

bulk_data.change_entity_owner(move_entities);

// The field data will also be moved with the wedge

11

Creating a new wedge

 Creating new entities

• When new entities are created the creating process is the owner of

the entity

• If two or more processes create an entity with the same rank and

identifier, the entity will be shared

//Declare a new wedge element

stk::mesh::PartVector add_parts;

add_parts.push_back(wedge_part);

stk::mesh::Entity & wedge = bulk_data.declare_entity(

element_rank,

element_id,

add_parts

);

12

Creating new nodes

 Generating new entities

• The bulk data function generate_new_entities is a parallel collective

call that will create new entities of the requested ranks with globally

unique ids

//create 6 nodes on process 0

std::vector<size_t> num_requested_entities(num_entities_rank,0);

if (bulk_data.parallel_rank() == 0) {

num_requested_entities[node_rank]=6;

}

stk::mesh::EntityVector requested_nodes;

//parallel collective call

bulk_data.generate_new_entities(

num_requested_entities,

request_nodes

);

13

Attaching the nodes to the wedge

 Creating/Destroying entity relations

• Relations are directed from the higher ranking entity to the lower ranking

entity, the converse relation is automatically inserted/deleted

• Processes can only create/destroy relations when they own or share the

higher ranking entity

• Creating or deleting relations may change entity’s induced mesh part

membership

// declare relations from the wedge to the nodes

for (size_t i=0; i<6; ++i) {

bulk_data.declare_relation (

wedge, // from entity

requested_nodes[i], // to entity

i // relation identifer

);

}

14

Destroying nodes

 Destroying entities

• A process may destroy its reference to an entity if the entity does

not have a relation to a higher ranking entity in its owned closure.

• If the owning process destroys an entity and another process

shares the entity, ownership automatically transfers to a sharing

process

// destroy the old nodes attached to the wedge

stk::mesh::PairIterRelations

node_relations = wedge.relations(node_rank);

for (size_t i=0; i<node_relations.size(); ++i) {

stk::mesh::Entity * node = node_relations[i].entity();

//destroy relation to wedge

bulk_data.destroy_relation(wedge, *node);

//destroy the entity

bulk_data.destroy_entity(node);

}

15

Changing mesh part membership

 Processes can only change part membership when they own or share the

entity

 The entity will be moved to a different bucket

 The fields available to the entity will change to match the fields restrictions

// add the wedge to the cylindrical coordinate part

stk::mesh::PartVector add_parts, remove_parts;

add_parts.push_back(& cylindrical_coord_part);

bulk_data.change_entity_parts(

wedge,

add_parts,

remove_parts

);

// If cylindrical_coord_part was declare to be of rank element,

then the nodes will be induced into this part and the

cylindrical coordinate field will be available to the nodes

16

Gear Demo: Putting it all together

17

